805 resultados para breach of fiduciary duty
Resumo:
This is the Irwell: Story of an industrial river document produced by the North West Water in 1979. This report is a leaflet format document. It focuses on the historical evolution of River Irwell, since it was “born” the river Irwell, about three hundred million years ago when shallow seas covered most of south east Lancashire and Europe to present years. It looks at Irwell’s pollution, highlighting the Irwell’s lower stretches were some of the region was the most polluted due to the population growth and establishment of industrial activities i.e. Lancashire’s great cotton industry, breach and dye works, paper mills, tanneries, chemical and gas works. Wastes from these industries were discharged directly to the river, together with crude sewage from an ever increasing population. However over the years the condition of the Irwell was gradually improved.
Resumo:
The twist elastic constant, K2, and the rotational viscosity coefficient, γ1, are of importance when the response lime for the in-plane switching mode is studied. Since adding dopants is one technique to improve the response characteristics, the effect of dopants on these physical properties is significant. The effect on K2 and γ1 of adding alkyl(alkoxy) phenylcyclopentenones and alkyl(alkoxy) cyanobiphenyls to the base mixture ZLI-4792 together with their temperature dependence have been investigated using different temperature scales. The reduced temperature scale showed the effect of these dopants on K2 is small. On the other hand, the temperature dependence of γ1 depends on both the absolute temperature scale and the reduced temperature scale. Therefore, it is clear that the choice of temperature scale with which to compare γ1 for different systems raises fundamental questions which way not have a unique answer. 2000 OPA (Overseas Publishers Association) N.V. Published by license under the Gordon and Breach Science Publishers imprint.
Resumo:
The flexoelectric behaviour of a hypertwisted chiral nematic bimesogenic liquid crystal is presented. Through detailed electro-optic measurements, with particular emphasis on the switching properties, we demonstrate remarkably high optical axis tilt angles. The material studied possessed a room temperature nematic phase and aligned easily on cooling under the application of a moderate electric field. Switching times of the order of 500 μs and contrast ratios of 90:1 are readily achieved. The tilt angles, measured using the rotating analyser technique, were found to be practically temperature independent and linear with the applied field. Tilt angles of 22.5° were obtained with moderate applied fields of 9.4 V/μm whilst fields of 25 V/μm yielded tilt angles of 45°. We believe these are the highest tilt angles ever recorded for such fields. © 2001 OPA (Overseas Publishers Association) N.V. Published by license under the Gordon and Breach Science Publishers imprint, a member of the Taylor & Francis Group.
Resumo:
In a chiral nematic liquid crystal, the flexoelectric effect consists of a fast and linear coupling with an applied electric field. One difficulty to overcome is the unwinding of the helix that occurs at higher fields due to dielectric coupling. The use of bimesogens, which possess very low molecular dielectric anisotropy can improve flexoelectric characteristics. New bimesogen compounds have recently been synthesised that exhibit switching angles of 45° for applied fields of about 9 V.μm-1. In this paper, results from dielectric, electro-optic and dynamic light scattering measurements are reported for the new bimesogenic mixture. The dielectric anisotropy Δε changes sign with temperature and its values range between -0.2 and 0.3 for the temperature range studied. For Δε weakly positive, no electric field Freedericksz transition could be induced but Williams domains are observed instead. The large decrease in the bend elastic constant to viscosity coefficient ratio is attributed to a large increase in the bend viscosity coefficient. © 2001 OPA (Overseas Publishers Association) N.V. Published by license under the Gordon and Breach Science Publishers imprint, a member of the Taylor & Francis Group.
Resumo:
Three-phase induction motors offer significant advantages over commutator motors in some domestic appliances. Models for wide speed range three-phase induction motors for use in a horizontal axis washing machine have been developed using the MEGA finite element package with an external formulation for calculating iron losses. Motor loss predictions have been verified using a novel high accuracy calorimeter. Good agreement has been observed over a wide speed range at different loadings. The model is used to predict motor temperature rise under typical washing machine loading conditions to ensure its limiting temperature is not exceeded and enables alternative designs to be investigated without recourse to physical prototypes. © 2005 IEEE.
Resumo:
New 2-arylidene-p-menthane-3-ones containing the ether bridging group in the arylidene fragment have been synthesized and studied as chiral dopants in ferroelectric liquid crystal mixtures. The ferroelectric properties of these compositions were compared with those for compositions including chiral dopants that do not contain any bridging group. The influence of bridging group and terminal alkyl substituent length in the dopant molecule on the ferroelectric parameters of systems studied is discussed. © 2001 OPA (Overseas Publishers Association) N.V. Published by license under the Gordon and Breach Science Publishers imprint, a member of the Taylor & Francis Group,.
Resumo:
A multi-dimensional combustion code implementing the Conditional Moment Closure turbulent combustion model interfaced with a well-established RANS two- phase flow field solver has been employed to study a broad range of operating conditions for a heavy duty direct-injection common-rail Diesel engine. These conditions include different loads (25%, 50%, 75% and full load) and engine speeds (1250 and 1830 RPM) and, with respect to the fuel path, different injection timings and rail pressures. A total of nine cases have been simulated. Excellent agreement with experimental data has been found for the pressure traces and the heat release rates, without adjusting any model constants. The chemical mechanism used contains a detailed NOx sub-mechanism. The predicted emissions agree reasonably well with the experimental data considering the range of operating points and given no adjustments of any rate constants have been employed. In an effort to identify CPU cost reduction potential, various dimensionality reduction strategies have been assessed. Furthermore, the sensitivity of the predictions with respect to resolution in particular relating to the CMC grid has been investigated. Overall, the results suggest that the presented modelling strategy has considerable predictive capability concerning Diesel engine combustion without requiring model constant calibration based on experimental data. This is true particularly for the heat release rates predictions and, to a lesser extent, for NOx emissions where further progress is still necessary. © 2009 SAE International.
Resumo:
Market competitiveness for aero engine power plant dictates that improvements in engine performance and reliability are guaranteed a priori by manufacturers. The requirement to accurately predict the life of engine components makes exacting demands of the internal air system, which must provide effective cooling over the engine duty cycle with the minimum consumption of compressor section air. Tests have been conducted at the University of Sussex using a turbine test facility which comprises a two stage turbine with an individual stage pressure ratio of 1.7:1. Main annulus air is supplied by an adapted Rolls-Royce Dart compressor at up to 440 K and 4.8 kg s-1. Cooling flow rates ranging from 0.71 to 1.46 Cw, ent, a disc entrainment parameter, have been used to allow ingress or egress dominated stator well flow conditions. The mechanical design of the test section allows internal cooling geometry to be rapidly re-configured, allowing the effect of jet momentum and coolant trajectory to be investigated. An important facet to this investigation is the use of CFD to model and analyse the flow structures associated with the cavity conditions tested, as well as to inform the design of cooling path geometry. This paper reports on the effectiveness of stator well coolant flow rate and delivery configurations using experimental data and also CFD analysis to better quantify the effect of stator well flow distribution on component temperatures. Copyright © 2011 by Rolls-Royce plc.
Resumo:
Gas turbine engine performance requires effective and reliable internal cooling over the duty cycle of the engine. Life predictions for rotating components subject to the main gas path temperatures are vital. This demands increased precision in the specification of the internal air system flows which provide turbine stator well cooling and sealing. This in turn requires detailed knowledge of the flow rates through rim seals and interstage labyrinth seals. Knowledge of seal movement and clearances at operating temperatures is of great importance when prescribing these flows. A test facility has been developed at the University of Sussex, incorporating a two stage turbine rated at 400 kW with an individual stage pressure ratio of 1.7:1. The mechanical design of the test facility allows internal cooling geometry to be rapidly re-configured, while cooling flow rates of between 0.71 CW, ENT and 1.46 C W, ENT, may be set to allow ingress or egress dominated cavity flows. The main annulus and cavity conditions correspond to in cavity rotational Reynolds numbers of 1.71×106< Reφ <1.93×106. Displacement sensors have been used to establish hot running seal clearances over a range of stator well flow conditions, allowing realistic flow rates to be calculated. Additionally, gas seeding techniques have been developed, where stator well and main annulus flow interactions are evaluated by measuring changes in gas concentration. Experiments have been performed which allow rim seal and re-ingestion flows to be quantified. It will be shown that this work develops the measurement of stator well cooling flows and provides data suitable for the validation of improved thermo-mechanical and CFD codes, beneficial to the engine design process. Copyright © 2011 by Rolls-Royce plc.
Resumo:
In this paper, we consider Kalman filtering over a network and construct the optimal sensor data scheduling schemes which minimize the sensor duty cycle and guarantee a bounded error or a bounded average error at the remote estimator. Depending on the computation capability of the sensor, we can either give a closed-form expression of the minimum sensor duty cycle or provide tight lower and upper bounds of it. Examples are provided throughout the paper to demonstrate the results. © 2012 IEEE.
Resumo:
A key challenge in achieving good transient performance of highly boosted engines is the difficulty of accelerating the turbocharger from low air flow conditions (“turbo lag”). Multi-stage turbocharging, electric turbocharger assistance, electric compressors and hybrid powertrains are helpful in the mitigation of this deficit, but these technologies add significant cost and integration effort. Air-assist systems have the potential to be more cost-effective. Injecting compressed air into the intake manifold has received considerable attention, but the performance improvement offered by this concept is severely constrained by the compressor surge limit. The literature describes many schemes for generating the compressed gas, often involving significant mechanical complexity and/or cost. In this paper we demonstrate a novel exhaust assist system in which a reservoir is charged during braking. Experiments have been conducted using a 2.0 litre light-duty Diesel engine equipped with exhaust gas recirculation (EGR) and variable geometry turbine (VGT) coupled to an AC transient dynamometer, which was controlled to mimic engine load during in-gear braking and acceleration. The experimental results confirm that the proposed system reduces the time to torque during the 3rd gear tip-in by around 60%. Such a significant improvement was possible due to the increased acceleration of turbocharger immediately after the tip-in. Injecting the compressed gas into the exhaust manifold circumvents the problem of compressor surge and is the key enabler of the superior performance of the proposed concept.
Resumo:
A key challenge in achieving good transient performance of highly boosted engines is the difficulty of accelerating the turbocharger from low air flow conditions (turbo lag). Multi-stage turbocharging, electric turbocharger assistance, electric compressors and hybrid powertrains are helpful in the mitigation of this deficit, but these technologies add significant cost and integration effort. Air-assist systems have the potential to be more cost-effective. Injecting compressed air into the intake manifold has received considerable attention, but the performance improvement offered by this concept is severely constrained by the compressor surge limit. The literature describes many schemes for generating the compressed gas, often involving significant mechanical complexity and/or cost. In this paper we demonstrate a novel exhaust assist system in which a reservoir is charged during braking. Experiments have been conducted using a 2.0 litre light-duty Diesel engine equipped with exhaust gas recirculation (EGR) and variable geometry turbine (VGT) coupled to an AC transient dynamometer, which was controlled to mimic engine load during in-gear braking and acceleration. The experimental results confirm that the proposed system reduces the time to torque during the 3rd gear tip-in by around 60%. Such a significant improvement was possible due to the increased acceleration of turbocharger immediately after the tip-in. Injecting the compressed gas into the exhaust manifold circumvents the problem of compressor surge and is the key enabler of the superior performance of the proposed concept. Copyright © 2013 SAE International.
Resumo:
Recent work has investigated the use of O2 concentration in the intake manifold as a control variable for diesel engines. It has been recognised as a very good indicator of NOX emissions especially during transient operation, however, much of the work is concentrated on estimating the O2 concentration as opposed to measuring it. This work investigates Universal Exhaust Gas Oxygen (UEGO) sensors and their potential to be used for such measurements. In previous work it was shown that these sensors can be operated in a controlled pressure environment such that their response time is of the order 10ms. In this paper, it is shown how the key causes of variation (and therefore potential sources of error) in sensor output, namely, pressure and temperature are largely mitigated by operating the sensors in such an environment. Experiments were undertaken on a representative light duty diesel engine using modified UEGO sensors in the intake and exhaust system. Results from other fast emissions measuring equipment are also shown and it is seen that the UEGO sensors are capable of giving an accurate measurement of O2 and EGR. Copyright © 2013 SAE International.
Resumo:
1-D engine simulation models are widely used for the analysis and verification of air-path design concepts and prediction of the resulting engine transient response. The latter often requires closed loop control over the model to ensure operation within physical limits and tracking of reference signals. For this purpose, a particular implementation of Model Predictive Control (MPC) based on a corresponding Mean Value Engine Model (MVEM) is reported here. The MVEM is linearised on-line at each operating point to allow for the formulation of quadratic programming (QP) problems, which are solved as the part of the proposed MPC algorithm. The MPC output is used to control a 1-D engine model. The closed loop performance of such a system is benchmarked against the solution of a related optimal control problem (OCP). As an example this study is focused on the transient response of a light-duty car Diesel engine. For the cases examined the proposed controller implementation gives a more systematic procedure than other ad-hoc approaches that require considerable tuning effort. © 2012 IFAC.
Resumo:
An experimental investigation of a turbine stage featuring very high end wall angles is presented. The initial turbine design did not achieve a satisfactory performance and the difference between the design predictions and the test results was traced to a large separated region on the rear suction-surface. To improve the agreement between computational fluid dynamics (CFD) and experiment, it was found necessary to modify the turbulence modeling employed. The modified CFD code was then used to redesign the vane, and the changes made are described. When tested, the performance of the redesigned vane was found to have much closer agreement with the predictions than the initial vane. Finally, the flowfield and performance of the redesigned stage are compared to a similar turbine, designed to perform the same duty, which lies in an annulus of moderate end wall angles. A reduction in stage efficiency of at least 2.4% was estimated for the very high end wall angle design. © 2014 by ASME.