935 resultados para bird conservation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Predation by house cats (Felis catus) is one of the largest human-related sources of mortality for wild birds in the United States and elsewhere, and has been implicated in extinctions and population declines of several species. However, relatively little is known about this topic in Canada. The objectives of this study were to provide plausible estimates for the number of birds killed by house cats in Canada, identify information that would help improve those estimates, and identify species potentially vulnerable to population impacts. In total, cats are estimated to kill between 100 and 350 million birds per year in Canada (> 95% of estimates were in this range), with the majority likely to be killed by feral cats. This range of estimates is based on surveys indicating that Canadians own about 8.5 million pet cats, a rough approximation of 1.4 to 4.2 million feral cats, and literature values of predation rates from studies conducted elsewhere. Reliability of the total kill estimate would be improved most by better knowledge of feral cat numbers and diet in Canada, though any data on birds killed by cats in Canada would be helpful. These estimates suggest that 2-7% of birds in southern Canada are killed by cats per year. Even at the low end, predation by house cats is probably the largest human-related source of bird mortality in Canada. Many species of birds are potentially vulnerable to at least local population impacts in southern Canada, by virtue of nesting or feeding on or near ground level, and habitat choices that bring them into contact with human-dominated landscapes where cats are abundant. Because cat predation is likely to remain a primary source of bird mortality in Canada for some time, this issue needs more scientific attention in Canada.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silvicultural treatments have been shown to alter the composition of species assemblages in numerous taxa. However, the intensity and persistence of these effects have rarely been documented. We used a before-after, control-impact (BACI) paired design, i.e., five pairs of 25-ha study plots, 1-control and 1-treated plot, to quantify changes in the density of eight forest bird species in response to selection harvesting over six breeding seasons, one year pre- and five years postharvest. Focal species included mature forest associates, i.e., Northern Parula (Setophaga americana) and Black-throated Green Warbler (Setophaga virens), forest generalists, i.e., Yellow-bellied Sapsucker (Sphyrapicus varius) and Swainson’s Thrush (Catharus ustulatus), early-seral specialists, i.e., Mourning Warbler (Geothlypis philadelphia) and Chestnut-sided Warbler (Setophaga pensylvanica), species associated with shrubby forest gaps, i.e., Black-throated Blue Warbler (Setophaga caerulescens), and mid-seral species, i.e., American Redstart (Setophaga ruticilla). As predicted, we found a negative numerical response to the treatment in the Black-throated Green Warbler, no treatment effect in the Yellow-bellied Sapsucker, and a positive treatment effect in early-seral specialists. We only detected a year effect in the Northern Parula and the American Redstart. There was evidence for a positive treatment effect on the Swainson’s Thrush when the regeneration started to reach the pole stage, i.e., fifth year postharvest. These findings suggest that selection harvesting has the potential to maintain diverse avian assemblages while allowing sustainable management of timber supply, but future studies should determine whether mature-forest associates can sustain second- and third-entry selection harvest treatments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is an imminent need for conservation and best-practice management efforts in marine ecosystems where global-scale declines in the biodiversity and biomass of large vertebrate predators are increasing and marine communities are being altered. We examine two marine-based industries that incidentally take migratory birds in Canada: (1) commercial fisheries, through bycatch, and (2) offshore oil and gas exploration, development, and production. We summarize information from the scientific literature and technical reports and also present new information from recently analyzed data to assess the magnitude and scope of mortality. Fisheries bycatch was responsible for the highest levels of incidental take of migratory bird species; estimated combined take in the longline, gillnet, and bottom otter trawl fisheries within the Atlantic, including the Gulf of St. Lawrence, and Pacific regions was 2679 to 45,586 birds per year. For the offshore oil and gas sector, mortality estimates ranged from 188 to 4494 deaths per year due to the discharge of produced waters resulting in oil sheens and collisions with platforms and vessels; however these estimates for the oil and gas sector are based on many untested assumptions. In spite of the uncertainties, we feel levels of mortality from these two industries are unlikely to affect the marine bird community in Canada, but some effects on local populations from bycatch are likely. Further research and monitoring will be required to: (1) better estimate fisheries-related mortality for vulnerable species and populations that may be impacted by local fisheries, (2) determine the effects of oil sheens from produced waters, and attraction to platforms and associated mortality from collisions, sheens, and flaring, so that better estimates of mortality from the offshore oil and gas sector can be obtained, and (3) determine impacts associated with accidental spills, which are not included in our current assessment. With a better understanding of the direct mortality of marine birds from industry, appropriate mitigation and management actions can be implemented. Cooperation from industry for data collection, research to fill knowledge gaps, and implementation of mitigation approaches will all be needed to conserve marine birds in Canada.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The boreal forest of western Canada is being dissected by seismic lines used for oil and gas exploration. The vast amount of edge being created is leading to concerns that core habitat will be reduced for forest interior species for extended periods of time. The Ovenbird (Seiurus aurocapilla) is a boreal songbird known to be sensitive to newly created seismic lines because it does not include newly cut lines within its territory. We examined multiple hypotheses to explain potential mechanisms causing this behavior by mapping Ovenbird territories near lines with varying states of vegetation regeneration. The best model to explain line exclusion behavior included the number of neighboring conspecifics, the amount of bare ground, leaf-litter depth, and canopy closure. Ovenbirds exclude recently cut seismic lines from their territories because of lack of protective cover (lower tree and shrub cover) and because of reduced food resources due to large areas of bare ground. Food reduction and perceived predation risk effects seem to be mitigated once leaf litter (depth and extent of cover) and woody vegetation cover are restored to forest interior levels. However, as conspecific density increases, lines are more likely to be used as landmarks to demarcate territorial boundaries, even when woody vegetation cover and leaf litter are restored. This behavior can reduce territory density near seismic lines by changing the spatial distribution of territories. Landmark effects are longer lasting than the effects from reduced food or perceived predation risk because canopy height and tree density take >40 years to recover to forest interior levels. Mitigation of seismic line impacts on Ovenbirds should focus on restoring forest cover as quickly as possible after line cutting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although mortality of birds from collisions with vehicles is estimated to be in the millions in the USA, Europe, and the UK, to date, no estimates exist for Canada. To address this, we calculated an estimate of annual avian mortality attributed to vehicular collisions during the breeding and fledging season, in Canadian ecozones, by applying North American literature values for avian mortality to Canadian road networks. Because owls are particularly susceptible to collisions with vehicles, we also estimated the number of roadkilled Barn owls (Tyto alba) in its last remaining range within Canada. (This species is on the IUCN red list and is also listed federally as threatened; Committee on the Status of Endangered Wildlife in Canada 2010, International Union for the Conservation of Nature 2012). Through seven Canadian studies in existence, 80 species and 2,834 specimens have been found dead on roads representing species from 14 orders of birds. On Canadian 1 and 2-lane paved roads outside of major urban centers, the unadjusted number of bird mortalities/yr during an estimated 4-mo (122-d) breeding and fledging season for most birds in Canada was 4,650,137 on roads traversing through deciduous, coniferous, cropland, wetlands and nonagricultural landscapes with less than 10% treed area. On average, this represents 1,167 birds killed/100 km in Canada. Adjusted for scavenging, this estimate was 13,810,906 (3,462 dead birds/100 km). For barn owls, the unadjusted number of birds killed annually on 4-lane roads during the breeding and fledging season, within the species geographic range in southern British Columbia, was estimated as 244 owls and, when adjusted for scavenging and observer bias (3.6 factor), the total was 851 owls.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Birds are vulnerable to collisions with human-made fixed structures. Despite ongoing development and increases in infrastructure, we have few estimates of the magnitude of collision mortality. We reviewed the existing literature on avian mortality associated with transmission lines and derived an initial estimate for Canada. Estimating mortality from collisions with power lines is challenging due to the lack of studies, especially from sites within Canada, and due to uncertainty about the magnitude of detection biases. Detection of bird collisions with transmission lines varies due to habitat type, species size, and scavenging rates. In addition, birds can be crippled by the impact and subsequently die, although crippling rates are poorly known and rarely incorporated into estimates. We used existing data to derive a range of estimates of avian mortality associated with collisions with transmission lines in Canada by incorporating detection, scavenging, and crippling biases. There are 231,966 km of transmission lines across Canada, mostly in the boreal forest. Mortality estimates ranged from 1 million to 229.5 million birds per year, depending on the bias corrections applied. We consider our most realistic estimate, taking into account variation in risk across Canada, to range from 2.5 million to 25.6 million birds killed per year. Data from multiple studies across Canada and the northern U.S. indicate that the most vulnerable bird groups are (1) waterfowl, (2) grebes, (3) shorebirds, and (4) cranes, which is consistent with other studies. Populations of several groups that are vulnerable to collisions are increasing across Canada (e.g., waterfowl, raptors), which suggests that collision mortality, at current levels, is not limiting population growth. However, there may be impacts on other declining species, such as shorebirds and some species at risk, including Alberta’s Trumpeter Swans (Cygnus buccinator) and western Canada’s endangered Whooping Cranes (Grus americana). Collisions may be more common during migration, which underscores the need to understand impacts across the annual cycle. We emphasize that these estimates are preliminary, especially considering the absence of Canadian studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Land managers often respond to declining numbers of target species by creating additional areas of habitat. If these habitats are also subject to human disturbance, then their efforts may be wasted. The European Nightjar (Caprimulgus europaeus) is a ground-nesting bird that is listed as a species of European Conservation Concern. It appears to be susceptible to human disturbance during the breeding season. We examined habitat use and reproductive success over 10 years in a breeding population on 1335 ha of managed land in Nottinghamshire, England. The study site was divided into a heavily disturbed section and a less disturbed section of equal habitat availability, forming a natural long-term experiment. The site is open to the public, and visitor numbers approximately doubled during the study. We found that overall Nightjar density was significantly lower and there were significantly fewer breeding pairs in the heavily disturbed habitat compared with the less disturbed habitat. However, average breeding success per pair, in terms of eggs and fledglings produced, was not significantly different between the two sections across years. Our findings suggest that human recreational disturbance may drastically alter settlement patterns and nest site selection of arriving females in some migratory ground-nesting species and may reduce the utility of apparently suitable patches of remnant and created habitat. Land managers should bear this in mind when creating new areas of habitat that will also be accessible to the public. Our study also highlights the value of long-term population monitoring, which can detect trends that short-term studies may miss.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two types of ecological thresholds are now being widely used to develop conservation targets: breakpoint-based thresholds represent tipping points where system properties change dramatically, whereas classification thresholds identify groups of data points with contrasting properties. Both breakpoint-based and classification thresholds are useful tools in evidence-based conservation. However, it is critical that the type of threshold to be estimated corresponds with the question of interest and that appropriate statistical procedures are used to determine its location. On the basis of their statistical properties, we recommend using piecewise regression methods to identify breakpoint-based thresholds and discriminant analysis or classification and regression trees to identify classification thresholds.