979 resultados para biological assays
Resumo:
Because of the obvious importance of P as a nutrient that often accelerates growth of phytoplankton (including toxic cyanobacteria) and therefore worsens water quality, much interest has been devoted to P exchange across the sediment-water interface. Generally, the release mode of P from the sediment differed greatly between shallow and deep lakes, and much of the effort has been focused on iron and oxygen, and also on the relevant environmental factors, for example, turbulence and decomposition, but a large part of the P variation in shallow lakes remains unexplained. This paper reviews experimental and field studies on the mechanisms of P release from the sediment in the shallow temperate (in Europe) and subtropical (in the middle and lower reaches of the Yangtze River in China) lakes, and it is suggested that pH rather than DO might be more important in driving the seasonal dynamics of internal P loading in these shallow lakes, i.e., intense photosynthesis of phytoplankton increases pH of the lake water and thus may increase pH of the surface sediment, leading to enhanced release of P (especially iron-bound P) from the sediment. Based on the selective pump of P (but not N) from the sediment by algal blooms, it is concluded that photosynthesis which is closely related to eutrophication level is the driving force for the seasonal variation of internal P loading in shallow lakes. This is a new finding. Additionally, the selective pump of P from the sediment by algal blooms not only explains satisfactorily why both TP and PO4-P in the hypereutrophic Lake Donghu declined significantly since the mid-1980s when heavy cyanobacterial blooms were eliminated by the nontraditional biomanipulation (massive stocking of the filter-feeding silver and bighead carps), but also explains why TP in European lakes decreased remarkably in the spring clear-water phase with less phytoplankton during the seasonal succession of aquatic communities or when phytoplankton biomass was decreased by traditional biomanipulation. Compared with deep lakes, wax and wane of phytoplankton due to alternations in the ecosystem structure is also able to exert significant influences on the P exchange at the sediment-water interface in shallow lakes. In other words, biological activities are also able to drive P release from sediments, and such a static P release process is especially more prominent in eutrophic shallow lakes with dense phytoplankton.
Resumo:
The changes of NH3-N, NO3-N, NO2-N and TN/TP were studied during growth and non-growth season in 33 subtropical shallow lakes in the middle and lower reaches of the Yangtze River. There were significant positive correlations among all nutrient concentrations, and the correlations were better in growth season than in non-growth season. When TP > 0.1 mgL(-1), NH3-N increased sharply in non-growth season with increasing TP, and NO3-N increased in growth season but decreased in non-growth season with TP. These might be attributed to lower dissolved oxygen and low temperature in non-growth season of the hypereutrophic lakes, since nitrification is more sensitive to dissolved oxygen and temperature than anti nitrification. When 0.1 mgL(-1)> TP > 0.035 mgL(-1), TN and all kinds of inorganic nitrogen were lower in growth season than in non-growth season, and phytoplankton might be the vital regulating factor. When TP < 0.035 mgL(-1), inorganic nitrogen concentrations were relatively low and NH3-N, NO2-N had significant correlations with phytoplankton, indicating that NH3-N and NO2-N might be limiting factors to phytoplankton. In addition, TN/TP went down with decline in TIP concentration, and TN and inorganic nitrogen concentrations were obviously lower in growth season than in non-growth season, suggesting that decreasing nitrogen (especially NH3-N and NO3-N) was an important reason for the decreasing TN/TP in growth season. The ranges of TN/TP were closely related to trophic level in both growth and non-growth seasons, and it is apparent that in the eutrophic and hypertrophic state the TN/TP ratio was obviously lower in growth season than in non-growth season. The changes of the TN/TP ratio were closely correlated with trophic levels, and both declines of TN in the water column and TP release from the sediment were important factors for the decline of the TN/TP ratio in growth season.
Resumo:
Traditionally, in cognitive science the emphasis is on studying cognition from a computational point of view. Studies in biologically inspired robotics and embodied intelligence, however, provide strong evidence that cognition cannot be analyzed and understood by looking at computational processes alone, but that physical system-environment interaction needs to be taken into account. In this opinion article, we review recent progress in cognitive developmental science and robotics, and expand the notion of embodiment to include soft materials and body morphology in the big picture. We argue that we need to build our understanding of cognition from the bottom up; that is, all the way from how our body is physically constructed.
Resumo:
Sex evolution has been a debating focus in evolutionary genetics. In lower vertebrates of reptiles, amphibians, and fish, a species or a bioform reproduces either sexually or asexually but never both. A few species were found to consist of all females in fish. These all-female species can propagate by asexual reproduction modes, such as gynogenesis and hybridogenesis. However, the coexistence of sexuality and asexuality in a single species was recently noted only in a cyprinid fish silver crucian carp, Carassius auratus gibelio. This fish had been demonstrated to be capable of gynogenesis stimulated by sperm from other related species. Surprisingly, natural populations of this fish consist of a minor but significant portion (approx. 20%) of males. As different clones with specific phenotypic and genetic characteristics have been found, and RAPD markers specific to each clone have recently been identified, this fish offers many advantages for analyzing whether or not genetic recombination occurs between different clones. In this study, artificial propagation was performed in clone F and clone D. Ovulated eggs from clone F were divided into two parts and respectively inseminated with sperm from a clone D male and from a red common carp (Cyprinus carpio) male. The control clone D individuals were selected from gynogenetic offspring of clone D activated by sperm of red common carp. The phenotype and sex ratio in the experimental groups were also observed. Using RAPD molecular markers, which allow for reliable discrimination and genetic analysis of different clones, we have revealed direct molecular evidence for gonochoristic reproduction in the gynogenetic silver crucian carp and confirmed a previous hypothesis that the silver crucian carp might reproduce both gynogenetically and gonochoristically. Therefore, we conclude that the silver crucian carp possesses two reproductive modes, i.e., gynogenetic and gonochoristic reproduction. The response mechanism of two reproductive development modes may be the first discovery in vertebrates. Additionally, we discuss the evolutionary implication between gynogenetic and gonochoristic reproduction modes and the contribution of the minor proportion of males to genetic flexibility in the gynogenetic silver crucian carp.
Resumo:
A total of six stations in the Han River system were selected for establishing polyurethane foam units (PFUs) to collect protozoans, including phytomastigophorans, zoomastigophorans, amoebas and ciliates, in July 1993. In the bioassessment of microbial communities using the PFUs, the number of species decreased as pollution intensity increased. The diversity index values calculated at the main stations generally agreed with the pollution status of the stations. Anyang-Chon (Chon means stream) showed the lowest diversity value (1.89), and all stations, except Masok and Anyang-Chon, showed diversity index values ranging from 3.15 to 3.93. The highest heterotrophic index (HI) value was detected in Anyang-Chon followed by Masok-Chon. The number of species at the main stations reached a maximum on day 11 of being exposed to PFUs. The results of S-eq, G and T-90% all suggest that bioassessments using the PFU system were well matched with pollution status of the water. All microbial variables were significantly correlated with comprehensive chemical pollution indices, P-a and P-b, with correlation coefficients ranging from r=0.87 to r=0.96.
Resumo:
The feasibility of an inexpensive wastewater treatment system is evaluated in this study. An integrated biological pond system was operated for more than 3 years to purify the wastewater from a medium-sized city, Central China. The experiment was conducted in 3 phases with different treatment combinations for testing their purification efficiencies. The pond system was divided into 3 functional regions: influent purification, effluent upgrading and multi-utilization. These regions were further divided into several zones and subzones. Various kinds of aquatic organisms, including macrophytes, algae, microorganisms and zooplankton, were effectively cooperating in the wastewater treatment in this system. The system attained high reductions of BOD5, COD, TSS, TN, TP and other pollutants. The purification efficiencies of this system were higher than those of most traditional oxidation ponds or ordinary macrophyte ponds. The mutagenic effect and numbers of bacteria and viruses declined significantly during the process of purification. After the wastewater flowed through the upgrading zone, the concentrations of pollutants and algae evidently decreased. Plant harvesting did not yield dramatic effects on reductions of the main pollutants, though it did significantly affect the biomass productivity of the macrophytes. The effluent from this system could be utilized in irrigation and aquaculture. Some aquatic products were harvested from this system and some biomass was utilized for food, fertilizer, fodder and some other uses. The wastewater was reclaimed for various purposes.
Resumo:
Purpose: To estimate the biological risks to the immune system of the type of space radiation, 12C6+, encountered by cosmonauts during long-term travel in space. Materials and methods: The Kun-Ming strain mice were whole-body irradiated by 12C6+ ion with 0, 0.01, 0.05, 0.075, 0.2, 0.3, 0.5, 0.75, 1 or 2 Gy, at a dose rate of 1 Gy/min. At 35 days after irradiation, the thymus and spleen weights were measured, the natural killer (NK) cells activity of spleen was determined by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT), and the interferon-gamma (IFN-gamma) levels in serum and thymus were detected with enzyme-linked immunosorbent assays (ELISA). Results: The results showed that the thymus weight, IFN-gamma levels in serum and the activity of splenic NK-cells had significantly increased at a dose of 0.05 Gy. With further dose increase, the weight of spleen continued to increase but the weight of thymus, IFN-gamma level and NK-cells activity declined. Conclusions: These results suggest that the dose of 0.05 Gy irradiation has a stimulatory effect on mouse immunity; this effect declined with increasing dose.