944 resultados para arsenate reductase
Resumo:
Sickle cell disease is an inflammatory condition with a pathophysiology that involves vaso-occlusive episodes. Mutations of the methylenetetrahydrofolate reductase (MTHFR) and cystathionine beta-synthase (CBS) genes are risk factors for vascular disease. Due to the importance of identifying risk factors for vaso-occlusive events in sickle cell patients, we investigated the frequencies of the C677T and 844ins68 mutations of the MTHFR and CBS genes, respectively. Three hundred patients with Hb SS, HB SC and HbS/Beta thalassemia, from Brasília, Goiânia, Rio de Janeiro, São Jose do Rio Preto and São Paulo were evaluated. Samples of 5 mL of venous blood were collected in EDTA after informed consent was received from patients. Classical diagnostic methods were used to confirm the hemoglobin phenotypes. The hemoglobin genotypes and polymorphisms studied were evaluated by Restriction Fragment Length Polymorphism and Allele Specific amplification. The results showed that 93 patients (31.00%) were heterozygous and 13 (4.33%) homozygous for the C677T mutation and 90 were heterozygotes (30.00%) and 8 homozygous (2.66%) for the 844ins68 mutation, both with significant differences for genotype frequency between the localities. The allelic frequencies are in Hardy-Weinberg equilibrium for both polymorphisms. The frequency of mutations was significant and the presence of related vaso-occlusive events was more common in patients with Hb SS (p = 0007). The 844ins68 mutation was approximately three times more frequent in patients with vaso-occlusive complications (p = 0011). The C677T mutation did not prove to be associated with risk of vaso-occlusive events (p = 0.193). A C677T-844ins68 interaction occurred in 12.08% of the patients, doubling the risk of vaso-occlusive manifestations. The frequencies of the polymorphisms are consistent with those expected in the Brazilian population. The presence of the 844ins68 mutation of the CBS gene proved to be a potential risk factor for vaso-occlusive events in sickle cell patients.
Resumo:
Intestinal pathogens are exposed to various stress conditions during their infectious cycle. Anaerobiosis, one of such hostile condition, is offered by the host within gut and intestinal lumen, where survival, multiplication and entry into intestinal epithelial cells are priority for the invasion of the pathogen. The fumarate reductase (frdABCD), dimethyl sulfoxide (DMSO)-trimethylamine N-oxide (TMAO) reductase (dmsABC), and nitrate reductase (narGHIJ) operons in Salmonella Typhimurium (STM) encode enzymes involved in anaerobic respiration to the electron acceptors fumarate, DMSO, TMAO, and nitrate, respectively. They are regulated in response to nitrate and oxygen availability and changes in cell growth rate. Vitamin B12 (cobalamin) is synthesized by Salmonella Typhimurium only under anaerobic growth conditions used as a cofactor in four known reactions. The deletion of cobS and cbiA genes prevent any form of cobalamin production. In the present study we evaluate the infection of birds by mutants of STM, with the anaerobic respiratory system committed by mutations in the genes: narG, napA, cobS, cbiA, frdA, dmsA, and torC. Virulence was assessed by oral inoculation of groups of one-day-old broilers with 0.1 mL of culture contained 10 8 colony forming units (CFU)/mL or diluted at 10 -3 and 10 -2 of strains mutants of Salmonella Typhimurium. Clinical signs and mortality were recorded over a period of 21 days. In general, the symptoms of chickens infected with the mutant strains were similar to those presenting by control birds. Except for STMNalr cbiA, all showed reduced capacity to cause mortality in comparison with the original strain. The mortality of group of chickens infected with STMNal r △narG, STMNal r △frdA, STMNal r △dmsA and STMNal r △cobS△cbiA showed significant decrease in mortality compared to control group (p<0.05).
Resumo:
The development of the germination process and drought stress during the drying of coffee can generate reactive oxygen species, which can be neutralized by way of antioxidant mechanisms. No studies related to antioxidant enzymes during the drying of coffee were found in the literature, and considering their importance, the enzymatic activities of superoxide dismutase (SOD), guaiacol peroxidase (GPOX) and glutathione reductase (GR), and also the hydrogen peroxide content were evaluated during the drying of two types of coffee bean, one processed as natural coffee and the other as pulped natural coffee. The results showed a reduction in the SOD, GPOX and GR enzymatic activities of the natural coffee as compared to the pulped natural coffee during the drying period. Moreover, the hydrogen peroxide content of the natural coffee was greater than that of the pulped natural coffee. These results suggest the development of oxidative stress during the coffee drying process, controlled more efficiently in pulped natural coffee by the early action of GPOX during the drying process. Nevertheless, differential responses by SOD isoenzymes and possibly the role of other peroxidases also appear to be involved in the responses observed. © 2013 Springer-Verlag Berlin Heidelberg.
Resumo:
One of the main pesticides used in the cultivation of sugarcane in São Paulo State, Brazil, is Regent®800WG, the main active compound of which is fipronil. Fipronil is a potent insecticide that eliminates pests, including insects resistant to pyrethroids, organophosphates (OP) and carbamates (CA). There is little known on the toxic effects of fipronil on non-target organisms, such as tadpoles of frogs. It is possible that this compound carries a high toxicity for these organisms, since the pesticide can be incorporated into aquatic environments during the rainy season, a time which coincides with the time of amphibian reproduction and the occurrence of tadpoles in the aquatic environment in this region. Thus, the pesticide could be contributing to the decline of amphibians in the northwest region of São Paulo state due to its wide use. This study aimed to test the influence of Regent®800WG on some biochemical systems of tadpoles (such as antioxidant defense systems) at different stages of development. The results of analysis from in vivo exposures demonstrated that only a few parameters in the groups exposed to fipronil responded to exposure to Regent®800WG, results which indicate that the pesticide instigates biochemical responses in tadpoles. Although catalase and glucose-6-phosphate dehydrogenase (G6PDH) were unchanged during the experiments, glutathione-S-transferase (GST) was inhibited in tadpoles, and the activity of glutathione reductase (GR) varied according to the exposure period and pesticide concentration. This data demonstrated the influence of the fipronil formulation on the metabolism of tadpoles, and showed that it can increase their susceptibility to environmental contaminants. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this study was to evaluate nitric oxide levels, lipid peroxidation, protein oxidation and glutathione reductase activity in serum of dogs experimentally infected by Ehrlichia canis. Banked serum samples of dogs divided into two groups were used: negative control (n=5) and infected by E. canis (n=5). The concentration of nitrite/nitrate (NOx), lipid peroxidation (TBARS), advanced oxidation protein products (AOPP), and glutathione reductase (GR) activity in sera were evaluated. Samples were collected on days 0, 3, 6, 18 and 30 post-infection (PI). NOx and TBARS levels were significantly (P<0.05) higher in the infected group at 18 and 30 days PI, as well as AOPP levels at 30 days PI when compared to samples from control group. The GR activity was significant (P<0.05) increased in serum of dogs infected by E. canis on days 18 and 30 PI. Based on the increased levels of NOx, TBARS, AOPP and GR activity we concluded that dogs experimentally infected by E. canis develop a state of redox imbalance and that these changes might be involved in the pathophysiology of the disease. © 2013 Elsevier B.V.
Resumo:
Background: Osteoporosis is a disease of bone metabolism in which bisphosphonates (BPS) are the most common medications used in its treatment, whose main objective is to reduce the risk of fractures. The aim of this study was to conduct a systematic review on BPs adherence for treatment of osteoporosis. Methods. Systematic review of articles on BPs adherence for treatment of osteoporosis, indexed on MEDLINE (via PubMed) databases, from inception of databases until January 2013. Search terms were Adherence, Medication (MeSH term), Bisphosphonates (MeSH term), and Osteoporosis (MeSH term). Results: Of the 78 identified studies, 27 met the eligibility criteria. Identified studies covered a wide range of aspects regarding adherence and associated factors, adherence and fracture, adherence and BPs dosage. The studies are mostly observational, conducted with women over 45 years old, showing low rates of adherence to treatment. Several factors may influence adherence: socio-economic and cultural, participation of physicians when guidance is given to the patient, the use of bone turnover markers, and use of generic drugs. The monthly dosage is associated with greater adherence compared to weekly dosage. Conclusions: Considering the methodological differences between the studies, the results converge to show that adherence to treatment of osteoporosis with BPs is still inadequate. Further experimental studies are needed to evaluate the adherence and suggest new treatment options. © 2013 Vieira et al.; licensee BioMed Central Ltd.
Resumo:
Flavonoid-rich Praxelis clematidea (Griseb.) R.M.King & H.Robinson (Asteraceae) is a native plant of South America. This study evaluates the gastroprotective activity and possible mechanisms for both the chloroform (CHCl3P) and ethyl acetate phases (AcOEtP) obtained from aerial parts of the plant. The activity was investigated using acute models of gastric ulcer. Gastric secretion biochemical parameters were determined after pylorus ligature. The participation of cytoprotective factors such as mucus, nitric oxide (NO), sulfhydryl (SH) groups, prostaglandin E2 (PGE 2), reduced glutathione (GSH), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR), reduction of lipid peroxidation (malondialdehyde level), and polymorphonuclear infiltration (myeloperoxidase activity), was also investigated. CHCl3P (125, 250, and 500 mg/kg) and AcOEtP (62.5, 125, and 250 mg/kg) showed significant gastroprotective activity, reducing the ulcerative index by 75, 83, 88 % and 66, 66, 81 % for ethanol; 67, 67, 56 % and 56, 53, 58 % for a non-steroidal anti-inflammatory drug (NSAID); and 74, 58, 59 % and 64, 65, 61 % for stress-induced gastric ulcer, respectively. CHCl3P (125 mg/kg) and AcOEtP (62.5 mg/kg) significantly reduced the ulcerative area by 78 and 83 %, respectively, for the ischemia-reperfusion model. They also did not alter the biochemical parameters of gastric secretion, the GSH level or the activities of SOD, GPx or GR. They increased the quantity of gastric mucus, not dependent on NO, yet dependent on SH groups, and maintained PGE2 levels. The P. clematidea phases demonstrated gastroprotective activity related to cytoprotective factors. © 2012 The Japanese Society of Pharmacognosy and Springer.
Design, synthesis and biological evaluation of new aryl thiosemicarbazone as antichagasic candidates
Resumo:
The present work reports on the synthesis, biological assaying and docking studies of a series of 12 aryl thiosemicarbazones, which were planned to act over two main enzymes, cruzain and trypanothione reductase. These enzymes are used as targets of trypanocidal activity in Chagas disease control with a minimal mutagenic profile. Three p-nitroaromatic thiosemicarbazones showed high activity against Trypanosoma cruzi in in vitro assays (IC50 < 57 μM), and no mutagenic profile was observed in micronucleous tests. Although the in vitro inhibition test showed that 10-μM doses of eight compounds inhibited cruzain activity, no correlation was found between cruzain inhibition and trypanocidal activity. © 2013 Elsevier Masson SAS. All rights reserved.
Resumo:
We explored the interaction between radiation of different wavelength and jasmonic acid (JA) or brassinosteroids (BR) on leaf senescence-induced oxidative stress. Three approaches were used: 1) jasmonic acid insensitive1-1 (jai1-1) and brassinosteroid-deficient [dumpy (dpy)] mutants were treated with red (R) or far-red (FR) radiation; 2) phytochromedeficient aurea (au) and high pigment-1 (hp-1) (radiation exaggerated response) mutants were treated with methyl jasmonate (MeJA) or epibrassinolide (epiBL); and 3) double mutants au jai1-1 and au dpy were produced. Leaf chlorophyll content, lipid peroxidation, and antioxidant enzyme activities were determined. After senescence induction in detached leaves, we verified that the patterns of chlorophyll degradation of hormonal and photomorphogenic mutants were not significantly different in comparison with original cv. Micro-Tom (MT). Moreover, there was no significant change in lipid peroxidation measured as malondialdehyde (MDA) production, as well as catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR) activities in the hormonal mutants. Exogenous BR increased CAT and APX activities in MT, au, and hp-1. As concerns the double mutants, severe reduction in H2O2 production which was not accompanied by changes in MDA content, and CAT and APX activities was observed during senescence in au dpy. The results suggest that JA and BR do not participate in light signaling pathway during leaf senescence-induced oxidative stress. © 2013 Springer Science+Business Media Dordrecht.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Biotecnologia - IQ
Resumo:
Pós-graduação em Agronomia (Ciência do Solo) - FCAV
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)