838 resultados para armed forces


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fil: Parra, Fabiana. Universidad Nacional de La Plata. Facultad de Humanidades y Ciencias de la Educación; Argentina.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fil: Parra, Fabiana. Universidad Nacional de La Plata. Facultad de Humanidades y Ciencias de la Educación; Argentina.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Almost three years have passed since the 'Arab Spring' began in late 2010. In the major sites of popular uprisings, political conditions remain unsettled or violent. Despite similarities in their original opposition to authoritarian rule, the outcomes differed from country to country. In Tunisia and Egypt, processes of transiting from authoritarian rule produced contrasting consequences for democratic politics. Uprisings led to armed rebellion in Libya and Syria, but whereas Gaddafi was overthrown, Asad was not. What explains the different trajectories and outcomes of the Arab Spring? How were these shaped by the power structure and levels of social control of the pre-uprising regimes and their state institutions, on the one hand, and by the character of the societies and oppositional forces that rose against them? Comparing Tunisia with Egypt, and Libya with Syria, this paper discusses various factors that account for variations in the trajectories and outcomes of the Arab Spring, namely, the legacy of the previous regime, institutional and constitutional choices during "transition" from authoritarian rule, socioeconomic conditions, and the presence of absence of ethnic, sectarian and geographic diversity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The door-closing process can reinforce the impression of a solid, rock-proof, car body or of a rather cheap, flimsy vehicle. As there are no real prototypes during rubber profile bidding-out stages, engineers need to carry out non-linear numerical simulations that involve complex phenomena as well as static and dynamic loads for several profile candidates. This paper presents a structured virtual design tool based on FEM, including constitutive laws and incompressibility constraints allowing to predict more realistically the final closing forces and even to estimate sealing overpressure as an additional guarantee of noise insulation. Comparisons with results of physical tests are performed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The computation of the non-linear vibration dynamics of an aerodynamically unstable bladed-disk is a formidable numerical task, even for the simplified case of aerodynamic forces assumed to be linear. The nonlinear friction forces effectively couple dif- ferent travelling waves modes and, in order to properly elucidate the dynamics of the system, large time simulations are typically required to reach a final, saturated state. Despite of all the above complications, the output of the system (in the friction microslip regime) is basically a superposition of the linear aeroelastic un- stable travelling waves, which exhibit a slow time modulation that is much longer than the elastic oscillation period. This slow time modulation is due to both, the small aerodynamic effects and the small nonlinear friction forces, and it is crucial to deter- mine the final amplitude of the flutter vibration. In this presenta- tion we apply asymptotic techniques to obtain a new simplified model that captures the slow time dynamics of the amplitudes of the travelling waves. The resulting asymptotic model is very re- duced and extremely cheap to simulate, and it has the advantage that it gives precise information about the characteristics of the nonlinear friction models that actually play a role in the satura- tion of the vibration amplitude.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The response of high-speed bridges at resonance, particularly under flexural vibrations, constitutes a subject of research for many scientists and engineers at the moment. The topic is of great interest because, as a matter of fact, such kind of behaviour is not unlikely to happen due to the elevated operating speeds of modern rains, which in many cases are equal to or even exceed 300 km/h ( [1,2]). The present paper addresses the subject of the evolution of the wheel-rail contact forces during resonance situations in simply supported bridges. Based on a dimensionless formulation of the equations of motion presented in [4], very similar to the one introduced by Klasztorny and Langer in [3], a parametric study is conducted and the contact forces in realistic situations analysed in detail. The effects of rail and wheel irregularities are not included in the model. The bridge is idealised as an Euler-Bernoulli beam, while the train is simulated by a system consisting of rigid bodies, springs and dampers. The situations such that a severe reduction of the contact force could take place are identified and compared with typical situations in actual bridges. To this end, the simply supported bridge is excited at resonace by means of a theoretical train consisting of 15 equidistant axles. The mechanical characteristics of all axles (unsprung mass, semi-sprung mass, and primary suspension system) are identical. This theoretical train permits the identification of the key parameters having an influence on the wheel-rail contact forces. In addition, a real case of a 17.5 m bridges traversed by the Eurostar train is analysed and checked against the theoretical results. The influence of three fundamental parameters is investigated in great detail: a) the ratio of the fundamental frequency of the bridge and natural frequency of the primary suspension of the vehicle; b) the ratio of the total mass of the bridge and the semi-sprung mass of the vehicle and c) the ratio between the length of the bridge and the characteristic distance between consecutive axles. The main conclusions derived from the investigation are: The wheel-rail contact forces undergo oscillations during the passage of the axles over the bridge. During resonance, these oscillations are more severe for the rear wheels than for the front ones. If denotes the span of a simply supported bridge, and the characteristic distance between consecutive groups of loads, the lower the value of , the greater the oscillations of the contact forces at resonance. For or greater, no likelihood of loss of wheel-rail contact has been detected. The ratio between the frequency of the primary suspension of the vehicle and the fundamental frequency of the bridge is denoted by (frequency ratio), and the ratio of the semi-sprung mass of the vehicle (mass of the bogie) and the total mass of the bridge is denoted by (mass ratio). For any given frequency ratio, the greater the mass ratio, the greater the oscillations of the contact forces at resonance. The oscillations of the contact forces at resonance, and therefore the likelihood of loss of wheel-rail contact, present a minimum for approximately between 0.5 and 1. For lower or higher values of the frequency ratio the oscillations of the contact forces increase. Neglecting the possible effects of torsional vibrations, the metal or composite bridges with a low linear mass have been found to be the ones where the contact forces may suffer the most severe oscillations. If single-track, simply supported, composite or metal bridges were used in high-speed lines, and damping ratios below 1% were expected, the minimum contact forces at resonance could drop to dangerous values. Nevertheless, this kind of structures is very unusual in modern high-speed railway lines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The computation of the non-linear vibration dynamics of an aerodynamically unstable bladed-disk is a formidable numerical task, even for the simplified case of aerodynamic forces assumed to be linear. The nonlinear friction forces effectively couple dif- ferent travelling waves modes and, in order to properly elucidate the dynamics of the system, large time simulations are typically required to reach a final, saturated state. Despite of all the above complications, the output of the system (in the friction microslip regime) is basically a superposition of the linear aeroelastic un- stable travelling waves, which exhibit a slow time modulation that is much longer than the elastic oscillation period. This slow time modulation is due to both, the small aerodynamic effects and the small nonlinear friction forces, and it is crucial to deter- mine the final amplitude of the flutter vibration. In this presenta- tion we apply asymptotic techniques to obtain a new simplified model that captures the slow time dynamics of the amplitudes of the travelling waves. The resulting asymptotic model is very re- duced and extremely cheap to simulate, and it has the advantage that it gives precise information about the characteristics of the nonlinear friction models that actually play a role in the satura- tion of the vibration amplitude.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main focus of this paper is on hydrodynamic modelling of a semisubmersible platform (which can support a 1.5MW wind turbine and is composed by three buoyant columns connected by bracings) with especial emphasis on the estimation of the wave drift components and their effects on the design of the mooring system. Indeed, with natural periods of drift around 60 seconds, accurate computation of the low-frequency second-order components is not a straightforward task. As methods usually adopted when dealing with the slow-drifts of deep-water moored systems, such as Newman?s approximation, have their errors increased by the relatively low resonant periods, and as the effects of depth cannot be ignored, the wave diffraction analysis must be based on full Quadratic Transfer Functions (QTF) computations. A discussion on the numerical aspects of performing such computations is presented, making use of the second-order module available with the seakeeping software WAMIT®. Finally, the paper also provides a preliminary verification of the accuracy of the numerical predictions based on the results obtained in a series of model tests with the structure fixed in bichromatic waves.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A nonlinear analysis of an elastic tube subjected to gravity forces and buoyancy pressure is carried out. An update lagrangian formulation is used. The structural analysis efficiency in terms of computer time and accuracy, has been improved when load stiffness matrices have been introduced. In this way the follower forces characteristics such as their intensity and direction changes can be well represented. A sensitivity study of different involved variables on the final deformed pipeline shape is carried out.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La energía eólica marina es uno de los recursos energéticos con mayor proyección pudiendo contribuir a reducir el consumo de combustibles fósiles y a cubrir la demanda de energía en todo el mundo. El concepto de aerogenerador marino está basado en estructuras fijas como jackets o en plataformas flotantes, ya sea una semisumergible o una TLP. Se espera que la energía eólica offshore juegue un papel importante en el perfil de producción energética de los próximos años; por tanto, las turbinas eólicas deben hacerse más fables y rentables para ser competitivas frente a otras fuentes de energía. Las estructuras flotantes pueden experimentar movimientos resonantes en estados de la mar con largos períodos de oleaje. Estos movimientos disminuyen su operatividad y pueden causar daños en los componentes eléctricos de las turbinas y en las palas, también en los risers y moorings. La respuesta de la componente vertical del movimiento puede reducirse mediante diferentes actuaciones: (1) aumentando la amortiguación del sistema, (2) manteniendo el período del movimiento vertical fuera del rango de la energía de la ola, y (3) reduciendo las fuerzas de excitación verticales. Un ejemplo típico para llevar a cabo esta reducción son las "Heave Plates". Las heave plates son placas que se utilizan en la industria offshore debido a sus características hidrodinámicas, ya que aumentan la masa añadida y la amortiguación del sistema. En un análisis hidrodinámico convencional, se considera una estructura sometida a un oleaje con determinadas características y se evalúan las cargas lineales usando la teoría potencial. El amortiguamiento viscoso, que juega un papel crucial en la respuesta en resonancia del sistema, es un dato de entrada para el análisis. La tesis se centra principalmente en la predicción del amortiguamiento viscoso y de la masa añadida de las heave plates usadas en las turbinas eólicas flotantes. En los cálculos, las fuerzas hidrodinámicas se han obtenido con el f n de estudiar cómo los coeficientes hidrodinámicos de masa añadida5 y amortiguamiento varían con el número de KC, que caracteriza la amplitud del movimiento respecto al diámetro del disco. Por otra parte, se ha investigado la influencia de la distancia media de la ‘heave plate’ a la superficie libre o al fondo del mar, sobre los coeficientes hidrodinámicos. En este proceso, un nuevo modelo que describe el trabajo realizado por la amortiguación en función de la enstrofía, es descrito en el presente documento. Este nuevo enfoque es capaz de proporcionar una correlación directa entre el desprendimiento local de vorticidad y la fuerza de amortiguación global. El análisis también incluye el estudio de los efectos de la geometría de la heave plate, y examina la sensibilidad de los coeficientes hidrodinámicos al incluir porosidad en ésta. Un diseño novedoso de una heave plate, basado en la teoría fractal, también fue analizado experimentalmente y comparado con datos experimentales obtenidos por otros autores. Para la resolución de las ecuaciones de Navier Stokes se ha usado un solver basado en el método de volúmenes finitos. El solver usa las librerías de OpenFOAM (Open source Field Operation And Manipulation), para resolver un problema multifásico e incompresible, usando la técnica VOF (volume of fluid) que permite capturar el movimiento de la superficie libre. Los resultados numéricos han sido comparados con resultados experimentales llevados a cabo en el Canal del Ensayos Hidrodinámicos (CEHINAV) de la Universidad Politécnica de Madrid y en el Canal de Experiencias Hidrodinámicas (CEHIPAR) en Madrid, al igual que con otros experimentos realizados en la Escuela de Ingeniería Mecánica de la Universidad de Western Australia. Los principales resultados se presentan a continuación: 1. Para pequeños valores de KC, los coeficientes hidrodinámicos de masa añadida y amortiguamiento incrementan su valor a medida que el disco se aproxima al fondo marino. Para los casos cuando el disco oscila cerca de la superficie libre, la dependencia de los coeficientes hidrodinámicos es más fuerte por la influencia del movimiento de la superficie libre. 2. Los casos analizados muestran la existencia de un valor crítico de KC, donde la tendencia de los coeficientes hidrodinámicos se ve alterada. Dicho valor crítico depende de la distancia al fondo marino o a la superficie libre. 3. El comportamiento físico del flujo, para valores de KC cercanos a su valor crítico ha sido estudiado mediante el análisis del campo de vorticidad. 4. Introducir porosidad al disco, reduce la masa añadida para los valores de KC estudiados, pero se ha encontrado que la porosidad incrementa el valor del coeficiente de amortiguamiento cuando se incrementa la amplitud del movimiento, logrando un máximo de damping para un disco con 10% de porosidad. 5. Los resultados numéricos y experimentales para los discos con faldón, muestran que usar este tipo de geometrías incrementa la masa añadida cuando se compara con el disco sólido, pero reduce considerablemente el coeficiente de amortiguamiento. 6. Un diseño novedoso de heave plate basado en la teoría fractal ha sido experimentalmente estudiado a diferentes calados y comparado con datos experimentales obtenidos por otro autores. Los resultados muestran un comportamiento incierto de los coeficientes y por tanto este diseño debería ser estudiado más a fondo. ABSTRACT Offshore wind energy is one of the promising resources which can reduce the fossil fuel energy consumption and cover worldwide energy demands. Offshore wind turbine concepts are based on either a fixed structure as a jacket or a floating offshore platform like a semisubmersible, spar or tension leg platform. Floating offshore wind turbines have the potential to be an important part of the energy production profile in the coming years. In order to accomplish this wind integration, these wind turbines need to be made more reliable and cost efficient to be competitive with other sources of energy. Floating offshore artifacts, such oil rings and wind turbines, may experience resonant heave motions in sea states with long peak periods. These heave resonances may increase the system downtime and cause damage on the system components and as well as on risers and mooring systems. The heave resonant response may be reduced by different means: (1) increasing the damping of the system, (2) keeping the natural heave period outside the range of the wave energy, and (3) reducing the heave excitation forces. A typical example to accomplish this reduction are “Heave Plates”. Heave plates are used in the offshore industry due to their hydrodynamic characteristics, i.e., increased added mass and damping. Conventional offshore hydrodynamic analysis considers a structure in waves, and evaluates the linear and nonlinear loads using potential theory. Viscous damping, which is expected to play a crucial role in the resonant response, is an empirical input to the analysis, and is not explicitly calculated. The present research has been mainly focused on the prediction of viscous damping and added mass of floating offshore wind turbine heave plates. In the calculations, the hydrodynamic forces have been measured in order to compute how the hydrodynamic coefficients of added mass1 and damping vary with the KC number, which characterises the amplitude of heave motion relative to the diameter of the disc. In addition, the influence on the hydrodynamic coefficients when the heave plate is oscillating close to the free surface or the seabed has been investigated. In this process, a new model describing the work done by damping in terms of the flow enstrophy, is described herein. This new approach is able to provide a direct correlation between the local vortex shedding processes and the global damping force. The analysis also includes the study of different edges geometry, and examines the sensitivity of the damping and added mass coefficients to the porosity of the plate. A novel porous heave plate based on fractal theory has also been proposed, tested experimentally and compared with experimental data obtained by other authors for plates with similar porosity. A numerical solver of Navier Stokes equations, based on the finite volume technique has been applied. It uses the open-source libraries of OpenFOAM (Open source Field Operation And Manipulation), to solve 2 incompressible, isothermal immiscible fluids using a VOF (volume of fluid) phase-fraction based interface capturing approach, with optional mesh motion and mesh topology changes including adaptive re-meshing. Numerical results have been compared with experiments conducted at Technical University of Madrid (CEHINAV) and CEHIPAR model basins in Madrid and with others performed at School of Mechanical Engineering in The University of Western Australia. A brief summary of main results are presented below: 1. At low KC numbers, a systematic increase in added mass and damping, corresponding to an increase in the seabed proximity, is observed. Specifically, for the cases when the heave plate is oscillating closer to the free surface, the dependence of the hydrodynamic coefficients is strongly influenced by the free surface. 2. As seen in experiments, a critical KC, where the linear trend of the hydrodynamic coefficients with KC is disrupted and that depends on the seabed or free surface distance, has been found. 3. The physical behavior of the flow around the critical KC has been explained through an analysis of the flow vorticity field. 4. The porosity of the heave plates reduces the added mass for the studied porosity at all KC numbers, but the porous heave plates are found to increase the damping coefficient with increasing amplitude of oscillation, achieving a maximum damping coefficient for the heave plate with 10% porosity in the entire KC range. 5. Another concept taken into account in this work has been the heave plates with flaps. Numerical and experimental results show that using discs with flaps will increase added mass when compared to the plain plate but may also significantly reduce damping. 6. A novel heave plate design based on fractal theory has tested experimentally for different submergences and compared with experimental data obtained by other authors for porous plates. Results show an unclear behavior in the coefficients and should be studied further. Future work is necessary in order to address a series of open questions focusing on 3D effects, optimization of the heave plates shapes, etc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1D and 2D patterning of uncharged micro- and nanoparticles via dielectrophoretic forces on photovoltaic z-cut Fe:LiNbO3 have been investigated for the first time. The technique has been successfully applied with dielectric micro-particles of CaCO3 (diameter d = 1-3 μm) and metal nanoparticles of Al (d = 70 nm). At difference with previous experiments in x- and y-cut, the obtained patterns locally reproduce the light distribution with high fidelity. A simple model is provided to analyse the trapping process. The results show the remarkably good capabilities of this geometry for high quality 2D light-induced dielectrophoretic patterning overcoming the important limitations presented by previous configurations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the procedure implemented at CEM for dynamic force calibration using sinusoidal excitations of force transducers. The method is based on a sinusoidal excitation of force transducers equipped with an additional top mass excited with an electrodynamic shaker system. The acceleration is measured by means of a laser vibrometer.