919 resultados para aqueous extract
Resumo:
In order to produce packaging films with a broad spectrum of action on microorganisms, the
effect of two antimicrobial (AM) to be included in the films, carvacrol and GSE were studied
separately on different microorganisms. Carvacrol was more effective against the grampositive
bacteria than against the gram-negative bacterium. GSE was not effective against
yeast. Subsequently, a search for optimal combinations of carvacrol, GSE and the addition of
chitosan (as a third component with film forming properties) was carried out. Response
surface analysis showed several synergetic effects and three optimal AM combinations
(OAMC) were obtained for each microorganism. The experimental validation confirmed that
the optimal solutions found can successfully predict the response for each microorganism.
The optimization of mixtures of the three components, but this time, using the same
concentration for all microorganisms, was also studied to obtain an OAMC with wide spectrum
of activity. The results of the response surface analysis showed several synergistic effects for
all microorganisms. Three OAMC, OAMC-1, OAMC-2, OAMC-3, were found to be the optimal
mixtures for all microorganisms. The radical scavenging activity (RSA) of the different agents
was then compared with a standard antioxidant (AOX) BHT, at different concentrations; as also
at the OAMC. The RSA increased in the following order: chitosan
Resumo:
In the recent past, hardly anyone could predict this course of GIS development. GIS is moving from desktop to cloud. Web 2.0 enabled people to input data into web. These data are becoming increasingly geolocated. Big amounts of data formed something that is called "Big Data". Scientists still don't know how to deal with it completely. Different Data Mining tools are used for trying to extract some useful information from this Big Data. In our study, we also deal with one part of these data - User Generated Geographic Content (UGGC). The Panoramio initiative allows people to upload photos and describe them with tags. These photos are geolocated, which means that they have exact location on the Earth's surface according to a certain spatial reference system. By using Data Mining tools, we are trying to answer if it is possible to extract land use information from Panoramio photo tags. Also, we tried to answer to what extent this information could be accurate. At the end, we compared different Data Mining methods in order to distinguish which one has the most suited performances for this kind of data, which is text. Our answers are quite encouraging. With more than 70% of accuracy, we proved that extracting land use information is possible to some extent. Also, we found Memory Based Reasoning (MBR) method the most suitable method for this kind of data in all cases.
Resumo:
We have shown previously that a fetal sheep liver extract (FSLE) containing significant quantities of fetal ovine gamma globin chain (Hbgamma) and LPS injected into aged (>20 months) mice could reverse the altered polarization (increased IL-4 and IL-10 with decreased IL-2 and IFNgamma) in cytokine production seen from ConA stimulated lymphoid cells of those mice. The mechanism(s) behind this change in cytokine production were not previously investigated. We report below that aged mice show a >60% decline in numbers and suppressive function of both CD4(+)CD25(+)Foxp3(+) Treg and so-called Tr3 (CD4(+)TGFbeta(+)), and that their number/function is restored to levels seen in control (8-week-old) mice by FSLE. In addition, on a per cell basis, CD4(+)CD25(-)Treg from aged mice were >4-fold more effective in suppression of proliferation and IL-2 production from ConA-activated lymphoid cells of a pool of CD4(+)CD25(-)T cells from 8-week-old mice than similar cells from young animals, and this suppression by CD25(-)T cells was also ameliorated following FSLE treatment. Infusion of anti-TGFbeta and anti-IL-10 antibodies in vivo altered Treg development following FSLE treatment, and attenuated FSLE-induced alterations in cytokine production profiles.
Resumo:
PURPOSE: The aim of the present study was the in vitro and in vivo evaluation of a novel aqueous formulation based on polymeric micelles for the topical delivery of cyclosporine A for dry eye treatment. METHODS: In vitro experiments were carried out on primary rabbit corneal cells, which were characterized by immunocytochemistry using fluorescein-labeled lectin I/isolectin B4 for the endothelial cells and mouse monoclonal antibody to cytokeratin 3+12 for the epithelial ones. Living cells were incubated for 1 hour or 24 hours with a fluorescently labeled micelle formulation and analyzed by fluorescence microscopy. In vivo evaluations were done by Schirmer test, osmolarity measurement, CyA kinetics in tears, and CyA ocular distribution after topical instillation. A 0.05% CyA micelle formulation was compared to a marketed emulsion (Restasis). RESULTS: The in vitro experiments showed the internalization of micelles in the living cells. The Schirmer test and osmolarity measurements demonstrated that micelles did not alter the ocular surface properties. The evaluation of the tear fluid gave similar CyA kinetics values: AUC = 2339 ± 1032 min*μg/mL and 2321 ± 881.63; Cmax = 478 ± 111 μg/mL and 451 ± 74; half-life = 36 ± 9 min and 28 ± 9 for the micelle formulation and Restasis, respectively. The ocular distribution investigation revealed that the novel formulation delivered 1540 ± 400 ng CyA/g tissue to the cornea. CONCLUSIONS: The micelle formulation delivered active CyA into the cornea without evident negative influence on the ocular surface properties. This formulation could be applied for immune-related ocular surface diseases.
Resumo:
The biotransformation of water insoluble substrates by mammalian and bacterial cells has been problematic, since these whole cell reactions are primarily performed in an aqueous environment The implementation of a twophase or encapsulated system has the advantages of providing a low water system along with the physiological environment the cells require to sustain themselves. Encapsulation of mammalian cells by formation of polyamide capsules via interfacial polymerization illustrated that the cells could not survive this type of encapsulation process. Biotransformation of the steroid spironolactone [3] by human kidney carcinoma cells was performed in a substrate-encapsulated system, yielding canrenone [4] in 70% yield. Encapsulation of nitrile-metabolizing Rhodococcus rhodochrous cells using a polyamide membrane yielded leaky capsules, but biotransformation of 2-(4- chlorophenyl)-3-methylbutyronitrile (CPIN) [6] in a free cell system yielded CPIN amide [7] in 40% yield and 94% ee. A two-phase biotransformation of CPIN consisting of a 5:1 ratio of tris buffer, pH 7.2 to octane respectively, gave CPIN acid [8] in 30% yield and 97% ee. It was concluded that Rhodococcus rhodochrous ATCC 17895 contained a nonselective nitrile hydratase and a highly selective amidase enzyme.
Resumo:
Molecular mechanics calculations were done on tetrahedral phosphine oxide zinc complexes in simulated water, benzene and hexane phases using the DREIDING II force field in the BIOGRAF molecular modeling program. The SUN workstation computer (SUN_ 4c, with SPARK station 1 processor) was used for the calculations. Experimental structural information used in the parameterization was obtained from the September 1989 version of the Cambridge Structural Database. 2 Steric and solvation energies were calculated for complexes of the type ZnCl2 (RlO)2' The calculations were done with and without inclusion of electrostatic interactions. More reliable simulation results were obtained without inclusion of charges. In the simulated gas phase, the steric energies increase regularly with number of carbons in the alkyl group, whereas they go through a maximum when solvent shells are included in the calculation. Simulated distribution ratios vary with chain length and type of chain branching and the complexes are found to be more favourable for extraction by benzene than by hexane, in accord with experimental data. Also, in line with what would be expected for a favorable extraction, calculations without electrostatics predict that the complexes are better solvated by the organic solvents than by water.
Resumo:
The goal of this thesis was to study factors related to the development of Brassica juncea as a sustainable nematicide. Brassica juncea is characterized by the glycoside (glucosinolate) sinigrin. Various methods were developed for the determination of sinigrin in Brassica juncea tissue extracts. Sinigrin concentrations in plant tissues at various stages of growth were monitored. Sinigrin enzymatically breaks down into allylisothiocyanate (AITC). AITC is unstable in aqueous solution and degradation was studied in water and in soil. Finally, the toxicity of AITC against the root-lesion nematode (Pratylenchus penetrans) was determined. A method was developed to extract sinigrin from whole Brassica j uncea tissues. The optimal time of extraction wi th boiling phosphate buffer (0.7mM, pH=6.38) and methanol/water (70:30 v/v) solutions were both 25 minutes. Methanol/water extracted 13% greater amount of sinigrin than phosphate buffer solution. Degradation of sinigrin in boiling phosphate buffer solution (0.13%/minute) was similar to the loss of sinigrin during the extraction procedure. The loss of sinigrin from boiling methanol/water was estimated to be O.Ol%/minute. Brassica juncea extract clean up was accomplished by an ion-pair solid phase extraction (SPE) method. The recovery of sinigrin was 92.6% and coextractive impurities were not detected in the cleaned up extract. Several high performance liquid chromatography (HPLC) methods were developed for the determination of sinigrin. All the developed methods employed an isocratic mobile phase system wi th a low concentration of phosphate buffer solution, ammonium acetate solution or an ion-pair reagent solution. A step gradient system was also developed. The method involved preconditioning the analytical column with phosphate buffer solution and then switching the mobile phase to 100% water after sample injection.Sinigrin and benzyl-glucosinolate were both studied by HPLC particle beam negative chemical ionization mass spectrometry (HPLCPB- NCI-MS). Comparison of the mass spectra revealed the presence of fragments arising from the ~hioglucose moiety and glucosinolate side-chain. Variation in the slnlgrin concentration within Brassica juncea plants was studied (Domo and Cutlass cuItivars). The sinigrin concentration in the top three leaves was studied during growth of each cultivar. For Cutlass, the minimum (200~100~g/g) and maximum (1300~200~g/g) concentrations were observed at the third and seventh week after planting, respectively. For Domo, the minimum (190~70~g/g) and maximum (1100~400~g/g) concentrations were observed at the fourth and eighth week after planting, respectively. The highest sinigrin concentration was observed in flower tissues 2050±90~g/g and 2300±100~g/g for Cutlass and Domo cultivars, respectively. Physical properties of AITC were studied. The solubility of AITC in water was determined to be approximately 1290~g/ml at 24°C. An HPLC method was developed for the separation of degradation compounds from aqueous AITC sample solutions. Some of the degradation compounds identified have not been reported in the literature: allyl-thiourea, allyl-thiocyanate and diallyl-sulfide. In water, AITC degradation to' diallyl-thiourea was favored at basic pH (9.07) and degradation to diallyl-sulfide was favored at acidic pH (4 . 97). It wap necessary to amend the aqueous AITC sample solution with acetonitrile ?efore injection into the HPLC system. The acetonitrile amendment considerably improved AITC recovery and the reproducibility of the results. The half-life of aqueous AITC degradation at room temperature did not follow first-order kinetics. Beginning with a 1084~g/ml solution, the half-life was 633 hours. Wi th an ini tial AITC concentration of 335~g/ml the half-life was 865 hours. At 35°C the half-life AITC was 76+4 hours essentially independent of the iiisolution pH over the range of pH=4.97 to 9.07 (1000~g/ml). AITC degradation was also studied in soil at 35°C; after 24 hours approximately 75% of the initial AITC addition was unrecoverable by water extraction. The ECso of aqueous AITC against the root-lesion nematode (Pratylenchus penetrans) was determined to be approximately 20~g/ml at one hour exposure of the nematode to the test solution. The toxicological study was also performed with a myrosinase treated Brassica juncea extract. Myrosinase treatment of the Brassica juncea extract gave nearly quantitative conversion of sinigrin into AITC. The myrosinase treated extract was of the same efficacy as an aqueous AITC solution of equivalent concentration. The work of this thesis was focused upon understanding parameters relevant to the development of Brassica juncea as a sustainable nematicide. The broad range of experiments were undertaken in support of a research priority at Agriculture and Agri-Food Canada.
Resumo:
Reprint of the 1810 ed. printed by Samuel Wood, New York,
Resumo:
Reprint of the 1810 ed. printed by Samuel Wood, New York, Reprinted by Ipswich By J. Bush, Tavern-Street
Resumo:
Skeletal muscle (SKM) is the most important tissue in maintaining glucose homeostasis and impairments in this tissue leads to insulin resistance (IR). Activation of 5’ AMP-activated kinase (AMPK) is viewed as a targeted approach to counteract IR. Rosemary extract (RE) has been reported to decrease blood glucose levels but its effects on SKM are not known. We hypothesized that RE acts directly on SKM to increase glucose uptake (GU). We found an increase in GU (184±5.07% of control, p<0.001) in L6 myotubes by RE to levels similar to insulin and metformin. Carnosic acid (CA) and rosmarinic acid (RA), major polyphenols found in RE, increased GU. RE, CA, and RA significantly increased AMPK phosphorylation and their effects on GU was reduced by an AMPK inhibitor. Our study is the first to show a direct effect of RE, CA and RA on SKM GU by a mechanism that involves AMPK activation.
Resumo:
Cancer cells display enhanced growth rates and a resistance to apoptosis. Lung cancer accounts for the most cancer related deaths and non-small cell lung cancer (NSCLC) represents an aggressive form of lung cancer, accounting for almost 80% of all lung cancer cases. The phytochemical rosemary extract (RE) has been reported to have anticancer effects in vitro and in vivo however, limited evidence exists regarding the effects of RE and its polyphenolic constituents carnosic acid (CA) and rosmarinic acid (RA) in lung cancer. The present study shows RE, CA and RA inhibit lung cancer cell proliferation and survival in various NSCLC cell lines and that CA and RA interact synergistically to inhibit cell proliferation. Moreover RE, CA and RA are capable of altering activation and/or expression of Akt, ERK and AMPK, signaling molecules which regulate cell proliferation and survival. RE shows potential as an anticancer agent and should be further investigated.
Resumo:
Extract from the minutes of the board of directors of the Long Point Company (3 pages, printed). This includes private instructions for Alfred March, steward at Long Point. This has the names J.I. Mackenzie, secretary-treasurer and Joseph A. Woodruff, president on the bottom of the page, Feb. 25, 1882.
Resumo:
Extract from the minutes of a session of the Provisional Municipal Council of the County of Welland held on Nov. 3rd, 1855. It was decided that the petition of Andrew Drew and others be laid over until the engineer could make a survey of the premises and report to the council. This was signed by Dexter Deverardo, 1855
Resumo:
Tesis (Master of Science with orientation in Sustainable Processes) UANL, 2014.