960 resultados para antenna radiation patterns
Resumo:
We describe here a photoelectron spectroscopy beamline installed on Indus-1 storage ring. Initially we give a brief description of optical and mechanical layout of beam-line. The beamline optics was designed to cover energy range from 10 eV to 200 eV and it consists of a pre-focusing mirror, a toroidal grating monochromator and a post-focusing mirror. We then discuss indigenously developed ultra high vacuum compatible work station to carry out angle integrated photoemission experiments. The beamline has been successfully commissioned and photoemission measurements on a variety of standard samples are presented.
Resumo:
The facile method of solution combustion was used to synthesize gamma(L)-Bi(2)MoO(6). The material was crystallized in a purely crystalline orthorhombic phase with sizes varying from 300 to 500 nm. Because the band gap was 2.51 eV, the degradation of wide variety of cationic and anionic dyes was investigated under solar radiation. Despite the low surface area (< 1 m(2)/g) of the synthesized material, gamma(L)-Bi(2)MoO(6) showed high photocatalytic activity under solar radiation due to its electronic and morphological properties. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The relaxor ferroelectric compositions Pb(Fe1/2Nb1/2)O-3 (PEN) and [Pb(Mg1/3Nb2/3)O-3](0.8)-[PbTiO3](0.2) (PMN-PT) are studied for their radiation response to the high energy heavy ions (50 MeV Li3+, fluence 1 X 10(13)-1 X 10(14) ions/cm(2)) in terms of their structural, dielectric and piezoelectric properties. There was no change in the crystallinity of both the compositions after irradiation as seen from the XRD. The PEN composition did not show much change in the dielectric constant but the value of T-m decreased by 8degreesC. The PMN-PT composition showed an increase in the dielectric constant with increase in the irradiation fluence from 1 x 10(13) to 1 X 10(14) ions/cm(2) with no change in the value of T-m. The piezoelectric coefficient decreased in both the samples after irradiation. Among the compositions studied, PEN is observed to be more radiation resistant to changes in structural and dielectric properties than PM-PT. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
The IEEE 802.16/WiMAX standard has fully embraced multi-antenna technology and can, thus, deliver robust and high transmission rates and higher system capacity. Nevertheless,due to its inherent form-factor constraints and cost concerns, a WiMAX mobile station (MS) should preferably contain fewer radio frequency (RF) chains than antenna elements.This is because RF chains are often substantially more expensive than antenna elements. Thus, antenna selection, wherein a subset of antennas is dynamically selected to connect to the limited RF chains for transceiving, is a highly appealing performance enhancement technique for multi-antenna WiMAX terminals.In this paper, a novel antenna selection protocol tailored for next-generation IEEE 802.16 mobile stations is proposed. As demonstrated by the extensive OPNET simulations, the proposed protocol delivers a significant performance improvement over conventional 802.16 terminals that lack the antenna selection capability. Moreover, the new protocol leverages the existing signaling methods defined in 802.16, thereby incurring a negligible signaling overhead and requiring only diminutive modifications of the standard. To the best of our knowledge, this paper represents the first effort to support antenna selection capability in IEEE 802.16 mobile stations.
Resumo:
Antenna selection allows multiple-antenna systems to achieve most of their promised diversity gain, while keeping the number of RF chains and, thus, cost/complexity low. In this paper we investigate antenna selection for fourth-generation OFDMA- based cellular communications systems, in particular, 3GPP LTE (long-term evolution) systems. We propose a training method for antenna selection that is especially suitable for OFDMA. By means of simulation, we evaluate the SNR-gain that can be achieved with our design. We find that the performance depends on the bandwidth assigned to each user, the scheduling method (round-robin or frequency-domain scheduling), and the Doppler spread. Furthermore, the signal-to-noise ratio of the training sequence plays a critical role. Typical SNR gains are around 2 dB, with larger values obtainable in certain circumstances.