914 resultados para after Coates et al. (1997)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spatiotemporal patterns of carbonate dissolution provide a critical constraint on carbon input during an ancient (~55.5 Ma) global warming event known as the Paleocene-Eocene thermal maximum (PETM), yet the magnitude of lysocline shoaling in the Southern Ocean is poorly constrained due to limited spatial coverage in the circum-Antarctic region. This shortcoming is partially addressed by comparing patterns of carbonate sedimentation at the Site 690 PETM reference section to those herein reconstructed for nearby Site 689. Biochemostratigraphic correlation of the two records reveals that the first ~36 ka of the carbon isotope excursion (CIE) signaling PETM conditions is captured by the Site 689 section, while the remainder of the CIE interval and nearly all of the CIE recovery are missing due to a coring gap. A relatively expanded stratigraphy and higher carbonate content at mid-bathyal Site 689 indicate that dissolution was less severe than at Site 690. Thus, the bathymetric transect delimited by these two PETM records indicates that the lysocline shoaled above Site 689 (~1,100 m) while the calcite compensation depth remained below Site 690 (~1,900 m) in the Weddell Sea region. The ensuing recovery of carbonate sedimentation conforms to a bathymetric trend best explained by gradual lysocline deepening as negative feedback mechanisms neutralized ocean acidification. Further, biochemostratigraphic evidence indicates the tail end of the CIE recovery interval at both sites has been truncated by a hiatus most likely related to vigorous production and advection of intermediate waters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Little is known concerning the effect of CO2 on phytoplankton ecophysiological processes under nutrient and trace element-limited conditions, because most CO2 manipulation experiments have been conducted under elements-replete conditions. To investigate the effects of CO2 and iron availability on phytoplankton ecophysiology, we conducted an experiment in September 2009 using a phytoplankton community in the iron limited, high-nutrient, low-chlorophyll (HNLC) region of the Bering Sea basin . Carbonate chemistry was controlled by the bubbling of the several levels of CO2 concentration (180, 380, 600, and 1000 ppm) controlled air, and two iron conditions were established, one with and one without the addition of inorganic iron. We demonstrated that in the iron-limited control conditions, the specific growth rate and the maximum photochemical quantum efficiency (Fv/Fm) of photosystem (PS) II decreased with increasing CO2 levels, suggesting a further decrease in iron bioavailability under the high-CO2 conditions. In addition, biogenic silica to particulate nitrogen and biogenic silica to particulate organic carbon ratios increased from 2.65 to 3.75 and 0.39 to 0.50, respectively, with an increase in the CO2 level in the iron-limited controls. By contrast, the specific growth rate, Fv/Fm values and elemental compositions in the iron-added treatments did not change in response to the CO2 variations, indicating that the addition of iron canceled out the effect of the modulation of iron bioavailability due to the change in carbonate chemistry. Our results suggest that high-CO2 conditions can alter the biogeochemical cycling of nutrients through decreasing iron bioavailability in the iron-limited HNLC regions in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ocean Drilling Program (ODP) Leg 210 is one of very few deep-sea legs drilled along the eastern Canadian continental margin. Most other drilling on this margin has been carried out by the petroleum industry on the shallow-water regions of the Scotian shelf and the Grand Banks (see Doeven, 1983, for nannofossil studies). Deep Sea Drilling Project (DSDP) Leg 12 Site 111 and ODP Leg 105 Site 647 were drilled in the general vicinity of Leg 210 but recovered no appreciable Lower Cretaceous (Albian-Cenomanian) sediments. Site 111 yielded indurated limestones dated tentatively as late Albian-early Cenomanian, whereas Site 647 encountered no Albian-Cenomanian sediments. Two sites (Sites 1276 and 1277) were drilled during Leg 210 in the Newfoundland Basin with the primary objective of recovering basement rocks to elucidate the rifting history of the North Atlantic Basin. The location for Leg 210 was selected because it is conjugate to the Iberia margin, which was drilled extensively during DSDP/ODP Legs 47B, 103, 149, and 173. A secondary but equally important objective was to recover the overlying sediments with the purpose of studying the postrift sedimentation history of this margin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Lesser Antilles arc is a particularly interesting island arc because it is presently very active, it is located perpendicular to the South American continent and its chemical and isotopic compositions display a strong north-south gradient. While the presence in the south of a thick pile of sedimentary material coming from the old South American continent has long been suspected to explain the geochemical gradient, previous studies failed to demonstrate unambiguously a direct link between the arc lava compositions and the subducted sediment compositions. Here, we present new Nd, Sm, Th, U and Pb concentrations and Nd-Pb isotopic data for over 60 sediments from three sites located in the fore arc region of the Lesser Antilles arc. New data for DSDP Site 543 drill core located east of Dominica Island complement the data published by White et al. (1985, doi:10.1016/0016-7037(85)90082-1) and confirm their relatively uniform isotopic compositions (i.e., 206Pb/204Pb between 19.13 and 19.53). In contrast, data obtained on DSDP Site 144 located further south, on the edge of the South American Rise and on sediments from Barbados Island are much more variable (206Pb/204Pb ranges from 18.81 to 27.69). The very radiogenic Pb isotopic compositions are found in a 60 m thick black shale unit, which has no age equivalent in the Site 543 drill core. We interpret the peculiar composition of the southern sediments as being due to two factors, (a) the proximity of the South American craton, which contributes coarse grain old detrital material that does not travel far from the continental shelf, and (b) the presence of older sediments including the thick black shale unit formed during Oceanic Anoxic events 2 and 3. The north-south isotopic change known along the Lesser Antilles arc can be explained by the observed geographical changes in the composition of the subducted sediments. About 1% contamination of the mantle wedge by Site 543 sediments explains the composition of the northern islands while up to 10% sediments like those of Site 144 is required in the source of the southern island lavas. The presence of black shales in the subducted pile provides a satisfactory explanation for the very low Delta8/4 values that characterize the Lesser Antilles arc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyzed Nd and Sr isotopic compositions of Neogene fossil fish teeth from two sites in the Pacific in order to determine the effect of cleaning protocols and burial diagenesis on the preservation of seawater isotopic values. Sr is incorporated into the teeth at the time of growth; thus Sr isotopes are potentially valuable for chemostratigraphy. Nd isotopes are potential conservative tracers of paleocirculation; however, Nd is incorporated post-mortem, and may record diagenetic pore waters rather than seawater. We evaluated samples from two sites (Site 807A, Ontong Java Plateau and Site 786A, Izu-Bonin Arc) that were exposed to similar bottom waters, but have distinct lithologies and pore water chemistries. The Sr isotopic values of the fish teeth appear to accurately reflect contemporaneous seawater at both sites. The excellent correlation between the Nd isotopic values of teeth from the two sites suggests that the Nd is incorporated while the teeth are in chemical equilibrium with seawater, and that the signal is preserved over geologic timescales and subsequent burial. These data also corroborate paleoseawater Nd isotopic compositions derived from Pacific ferromanganese crusts that were recovered from similar water depths (Ling et al., 1997; doi:10.1016/S0012-821X(96)00224-5). This corroboration strongly suggests that both materials preserve seawater Nd isotope values. Variations in Pacific deepwater e-Nd values are consistent with predictions for the shoaling of the Isthmus of Panama and the subsequent initiation of nonradiogenic North Atlantic Deep Water that entered the Pacific via the Antarctic Circumpolar Current.