903 resultados para acetic acid ester


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the sediments of the NW African continental margin the mainly biogenic carbonate constituents become increasingly diluted with terrigenous material as one approaches the coast, as indicated by the carbonate-CO2 content, the Al2O3/SiO2-ratios, and the presence of ammonia fixed to alumino-silicates, predominantly to illites. In the norther area of the investigation - off Cape Blanc and Cape Bojador . the terrigenous constituents are mainly quartz from the Sahara Desert, whereas in the south - off Senegal - more alumino-silicates as clay minerals are admixed with the carbonate constituents. The organic carbon content of the continental slope sediments off Senegal is higher than in samples of the continental rise or of the preservation of organic matter as a result of high production and relatively rapid sedimentation. The zone of manganese-oxide enrichment follows the redox potential of + 330 mV from the surface (0-5 cm) into the sediments (20-30 cm deep) at 2000--3000 m and 3700 m of water depths, respectively. At shallower water depths, low redox potentials preclude deposition of manganese oxides and cause their mobilization from the sediments. About 1/3 of the total sedimentary Zn and 1/4 of the Cu is associated with the carbonate mineral fraction, probably in calcium phosphate overgrowths as a result of the mineralization of phosphorus-containing organic matter. Besides the precipitation of calcium phosphate, the mineralization of organic matter mediated by bacterial sulfate reduction also results in calcium carbonate precipitation and the exchange of ammonia for potassium on illites. Because of these simultaneous reactions, the depth distribution of all mineralization constituents in the interstitial water can be determined using the actual molar carbon-to-nitrogen-to phosphorus ratios of the sedimentary organic matter. The amount of sulfide sulfur in this process indicates the predominance of bacterial sulfate reduction in the sediments off NW Africa. This process also preferentially decomposes nitrogen- and phosphorus-containing organic compounds so organic matter deficient in these elements is characteristic for the rapidly accumulating sediments than today, indicating there was increased production of organic carbon compounds and more favorable conditions of their preservations. During the last interglacial times conditions were similar to those to today. This differentiation with time has also been observed in sediments from the Argentine Basin and from slope off South India indicating perhaps world-wide environmental changes throughout Late Quaternary times.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Particles of red brown to yellow brown semiopaque oxides (RSO) dominate the insoluble residue fraction of the sediments at Site 597. Unlike the X-ray amorphous particles in the Bauer Deep sediments, these particles are composed of mainly goethite; the amount of X-ray amorphous ferric hydroxide and poorly crystalline ferromanganese oxyhydroxides is generally small relative to the amount of goethite. A qualitative goethite crystallinity index was established. The variations observed in the crystallinity of goethite with increasing depth and changes in lithology suggest that aging and long-term exposure to seawater in a high water/sediment regime influence and increase the rate of recrystallization of the Fe-oxyhydroxides of the RSO particles. The percentage of organic carbon is low in these sediments; it varies primarily between 0.2 and 0.4 wt.%. Phillipsite is present throughout the sediment column and is more concentrated in the youngest clay layer and in the oldest basal sediments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the nutrient-rich Southern Ocean, Fe is a vital constituent controlling the growth of phytoplankton. Despite much effort, the origin and transport of Fe to the oceans are not well understood. In this study we address the issue with geochemical data and Nd isotopic compositions of suspended particle samples collected from 1997 to 1999 in the South Atlantic Sector of the Southern Ocean. Al, Th, and rare earth element (REE) concentrations as well as 143Nd/144Nd isotopic ratios in acetic acid-leached particle samples representing the lithogenic fraction delineate three major sources: (1) Patagonia and the Antarctic Peninsula provide material with eNd > -4 that is transported toward the east with the polar and subpolar front jets, (2) the south African shelf, although its influence is limited by the circumpolar circulation and wind direction, can account for material with eNd of -12 to -14 adjacent to South Africa, and (3) East Antarctica provides material with eNd of -10 to -15 to the eastern Weddell Sea and adjacent Antarctic Circumpolar Current. For this region we interpret the Nd isotopic evidence in combination with oceanographic/atmospheric constraints as evidence for supply of significant amounts of terrigenous detritus by icebergs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A metabolic flux model was developed for Streptococcus zooepidemicus to compare the metabolism of glucose and maltose during aerobic batch cultivation. Lactic acid was the main product of glucose metabolism whereas acetic acid was the main product of maltose metabolism. This difference was chiefly attributed to the two-fold higher flux through NADH oxidase in maltose-grown cells that enabled the ATP generation rate to remain high despite a slower maltose consumption rate. The two-fold higher flux was matched by a two-fold increase in NADH oxidase activity, 2.53 +/- 0.1 mumol NADH min(-1) mg(-1) protein on maltose versus 1.07 +/- 0.04 Rmol NADH min(-1) mg(-1) protein on glucose, indicating that NADH oxidase activity is regulated by the energy status of the cell. Surprisingly, the energy status of the cell had little impact on hyaluronic acid (HA) yield and molecular weight. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The metabolic conjugation of exogenous and endogenous carboxylic acid substrates with endogenous glucuronic acid, mediated by the uridine diphosphoglucuronosyl transferase (UGT) superfamily of enzymes, leads to the formation of acyl glucuronide metabolites. Since the late 1970s, acyl glucuronides have been increasingly identified as reactive electrophilic metabolites, capable of undergoing three reactions: intramolecular rearrangement, hydrolysis, and intermolecular reactions with proteins leading to covalent drug-protein adducts. This essential dogma has been accepted for over a decade. The key question proposed by researchers, and now the pharmaceutical industry, is: does or can the covalent modification of endogenous proteins, mediated by reactive acyl glucuronide metabolites, lead to adverse drug reactions, perhaps idiosyncratic in nature? This review evaluates the evidence for acyl glucuronide-derived perturbation of homeostasis, particularly that which might result from the covalent modification of endogenous proteins and other macromolecules. Because of the availability of acyl glucuronides for test tube/in vitro experiments, there is now a substantial literature documenting their rearrangement, hydrolysis and covalent modification of proteins in vitro. It is certain from in vitro experiments that serum albumin, dipeptidyl peptidase IV, tubulin and UGTs are covalently modified by acyl glucuronides. However, these in vitro experiments have been specifically designed to amplify any interference with a biological process in order to find biological effects. The in vivo situation is not at all clear. Certainly it must be concluded that all humans taking carboxylate drugs that form reactive acyl glucuronides will form covalent drug-protein adducts, and it must also be concluded that this in itself is normally benign. However, there is enough in vivo evidence implicating acyl glucuronides, which, when backed up by in vivo circumstantial and documented in vitro evidence, supports the view that reactive acyl glucuronides may initiate toxicity/immune responses. In summary, though acyl glucuronide-derived covalent modification of endogenous macromolecules is well-defined, the work ahead needs to provide detailed links between such modification and its possible biological consequences. (C) 2003 Elsevier Science Ireland Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A mathematical model that describes the operation of a sequential leach bed process for anaerobic digestion of organic fraction of municipal solid waste (MSW) is developed and validated. This model assumes that ultimate mineralisation of the organic component of the waste occurs in three steps, namely solubilisation of particulate matter, fermentation to volatile organic acids (modelled as acetic acid) along with liberation of carbon dioxide and hydrogen, and methanogenesis from acetate and hydrogen. The model incorporates the ionic equilibrium equations arising due to dissolution of carbon dioxide, generation of alkalinity from breakdown of solids and dissociation of acetic acid. Rather than a charge balance, a mass balance on the hydronium and hydroxide ions is used to calculate pH. The flow of liquid through the bed is modelled as occurring through two zones-a permeable zone with high flushing rates and the other more stagnant. Some of the kinetic parameters for the biological processes were obtained from batch MSW digestion experiments. The parameters for flow model were obtained from residence time distribution studies conducted using tritium as a tracer. The model was validated using data from leach bed digestion experiments in which a leachate volume equal to 10% of the fresh waste bed volume was sequenced. The model was then tested, without altering any kinetic or flow parameters, by varying volume of leachate that is sequenced between the beds. Simulations for sequencing/recirculating 5 and 30% of the bed volume are presented and compared with experimental results. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A 2-year study was carried out on established trees at two sites in southeastern Queensland, Australia, to identify environmental factors that influenced rooting of Backhousia citriodora from cuttings. Complex interactions of rainfall events above 20 mm from the preceding month and mean maximum temperature on stock plants resulted in a correlation with rooting success of r = 0.81 and 0.74 for sites at The University Of Queensland, Gatton Campus, and Cedar Glen, respectively. A more detailed investigation under controlled environmental conditions showed that maintaining stock plants at temperatures between 10 and 30degreesC had no direct effect on rooting capacity. However, temperature was correlated with growth, which may have an indirect effect on root formation. In spring floral initiation was found to only delay rooting and had no effect on the final rooting percentage. A series of seasonal experiments demonstrated that application of the auxins indole-3-acetic acid, indole-3-butyric acid and napthaleneacetic acid over a range of concentrations (1000-8000 mug/ml) did not significantly increase rooting compared to the control and there is no practical advantage in applying auxins. Seasonal results and the temperature experiment also suggest that under a glasshouse environment with higher temperatures in winter and an adequate supply of water, B. citriodora cuttings can be successfully rooted over the whole year. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cervical cancer is caused by infection with a range of high risk oncogenic human papillomavirus (HPV) types, and it is now accepted that >99% of cervical cancer is initiated by HPV infection. The estimated lifetime risk of cervical cancer is nevertheless relatively low (less than I in 20 for most community based studies). Although sensitivity and specificity of the available diagnostic techniques are suboptimal, Screening for persistent HPV infection is effective in reducing the incidence of cervical cancer. Infection can be detected by molecular techniques or by cytological examination of exfoliated cervical cells. Persistent infection is the single best predictor of risk of cervical cancer.(1) The latest findings of HPV and cervical cancer research need to be widely disseminated to the scientific and medical societies that are updating screening and management protocols, public health professionals, and to women and clinicians. This report reviews current evidence, clinical implications and directions for further research in the prevention, control and management of cervical cancer. We report the conclusions of the Experts' Meeting at the EUROGIN 2003 conference. (C) 2003 Wiley-Liss, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In Pisum sativium, the RAMOSUS genes RMS1, RMS2, and RMS5 regulate shoot branching via physiologically defined mobile signals. RMS1 is most likely a carotenoid cleavage enzyme and acts with RMS5 to control levels of an as yet unidentified mobile branching inhibitor required for auxin inhibition of branching. Our work provides molecular, genetic, and physiological evidence that RMS1 plays a central role in a shoot-to-root-to-shoot feedback system that regulates shoot branching in pea. Indole-3-acetic acid (IAA) positively regulates RMS1 transcript level, a potentially important mechanism for regulation of shoot branching by IAA. In addition, RMS1 transcript levels are dramatically elevated in rms3, rms4, and rms5 plants, which do not contain elevated IAA levels. This degree of upregulation of RMS1 expression cannot be achieved in wild-type plants by exogenous IAA application. Grafting studies indicate that an IAA-independent mobile feedback signal contributes to the elevated RMS1 transcript levels in rms4 plants. Therefore, the long-distance signaling network controlling branching in pea involves IAA, the RMS1 inhibitor, and an IAA-independent feedback signal. Consistent with physiological studies that predict an interaction between RMS2 and RMS1, rms2 mutations appear to disrupt this IAA-independent regulation of RMS1 expression.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Large blooms of the marine cyanobacterium Lyngbya majuscula in Moreton Bay, Australia (27 degrees 05'S, 153 degrees 08'E) have been re-occurring for several years. A bloom was studied in Deception Bay (Northern Moreton Bay) in detail over the period January-March 2000. In situ data loggers and field sampling characterised various environmental parameters before and during the L. majuscula bloom. Various ecophysiological experiments were conducted on L. majuscula collected in the field and transported to the laboratory, including short-term (2h) C-14 incorporation rates and long-term (7 days) pulse amplitude modulated (PAM) fluorometry assessments of photosynthetic capacity. The effects of L. majuscula on various seagrasses in the bloom region were also assessed with repeated biomass sampling. The bloom commenced in January 2000 following usual December rainfall events, water temperatures in excess of 24 degrees C and high light conditions. This bloom expanded rapidly from 0 to a maximum extent of 8 km(2) over 55 days with an average biomass of 210 g(dw)(-1) m(-2) in late February, followed by a rapid decline in early April. Seagrass biomass, especially Syringodium isoetifolium, was found to decline in areas of dense L. majuscula accumulation. Dissolved and total nutrient concentrations did not differ significantly (P > 0.05) preceding or during the bloom. However, water samples from creeks discharging into the study region indicated elevated concentrations of total iron (2.7-80.6 mu M) and dissolved organic carbon (2.5-24.7 mg L-1), associated with low pH values (3.8-6.7). C-14 incorporation rates by L. majuscula were significantly (P < 0.05) elevated by additions of iron (5 mu M Fe), an organic chelator, ethylenediaminetetra-acetic acid (5 mu M EDTA) and phosphorus (5 mu M PO4-3). Photosynthetic capacity measured with PAM fluorometry was also stimulated by various nutrient additions, but not significantly (P > 0.05). These results suggest that the L. majuscula bloom may have been stimulated by bioavailable iron, perhaps complexed by dissolved organic carbon. The rapid bloom expansion observed may then have been sustained by additional inputs of nutrients (N and P) and iron through sediment efflux, stimulated by redox changes due to decomposing L. majuscula mats. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

One of the first and most enduring roles identified for the plant hormone auxin is the mediation of apical dominance. Many reports have claimed that reduced stem indole-3-acetic acid (IAA) levels and/ or reduced basipetal IAA transport directly or indirectly initiate bud growth in decapitated plants. We have tested whether auxin inhibits the initial stage of bud release, or subsequent stages, in garden pea (Pisum sativum) by providing a rigorous examination of the dynamics of auxin level, auxin transport, and axillary bud growth. We demonstrate that after decapitation, initial bud growth occurs prior to changes in IAA level or transport in surrounding stem tissue and is not prevented by an acropetal supply of exogenous auxin. We also show that auxin transport inhibitors cause a similar auxin depletion as decapitation, but do not stimulate bud growth within our experimental time- frame. These results indicate that decapitation may trigger initial bud growth via an auxin-independent mechanism. We propose that auxin operates after this initial stage, mediating apical dominance via autoregulation of buds that are already in transition toward sustained growth.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Molecular tools for the species-specific detection of Gluconacetobacter sacchari, Gluconacetobacter diazotrophicus, and Gluconacetobacter liquefaciens from the pink sugarcane mealybug (PSMB) Saccharicoccus sacchari Cockerell (Homiptera: Pseudococcidae) were developed and used in polymerase chain reactions (PCR) and in fluorescence in situ hybridizations (FISH) to better understand the microbial diversity and the numerical significance of the acetic acid bacteria in the PSMB microenvironment. The presence of these species in the PSMB occurred over a wide range of sites, but not in all sites in sugarcane-growing areas of Queensland, Australia, and was variable over time. Molecular probes for use in FISH were also designed for the three acetic acid bacterial species, and shown to be specific only for the target species. Use of these probes in FISH of squashed whole mealybugs indicated that these acetic acid bacteria species represent only a small proportion of the microbial population of the PSMB. Despite the detection of Glac. sacchari, Glac. diazotrophicus, and Glac. liquefaciens by PCR from different mealybugs isolated at various times and from various sugarcane-growing areas in Queensland, Australia, these bacteria do not appear to be significant commensals in the PSMB environment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The relatively low numbers and sporadic pattern of incidence of the acetic acid bacterium Gluconacetobacter sacchari with the pink sugarcane mealybug (PSMB) Saccharicoccus sacchari Cockerell (Homoptera: Pseudococcidae) over time and from different sugarcane-growing regions do not indicate that Glac. sacchari is a significant commensal of the PSMB, as has been previously proposed. This study was conducted to investigate the hypothesis that Glac. sacchari is, like its closest relative Glac. diazotrophicus, an endophyte of sugarcane (Saccharum officinarium L.). In this study, both Glac. sacchari and Glac. diazotrophicus were isolated from internal sugarcane tissue, although the detection of both species was sporadic in all sugarcane-growing regions of Queensland tested. To confirm the ability of Glac. sacchari to live endophytically, an experiment was conducted in which the roots of micropropagated sugarcane plantlets were inoculated with Glac. sacchari, and the plantlets were subsequently examined for the presence of the bacterium in the stem cells. Pure cultures of Glac. sacchari were grown from homogenized surface sterilized sugarcane stems inoculated with Glac. sacchari. Electron microscopy was used to provide further conclusive evidence that Glac. sacchari lives as an endophyte in sugarcane. Scanning electron microscopy of (SEM) sugarcane plantlet stems revealed rod-shaped cells of Glac. sacchari within a transverse section of the plantlet stem cells. The numbers of bacterial cells inside the plant cell indicated a successful infection and colonization of the plant tissue. Using transmission electron microscopy, (TEM) bacterial cells were more difficult to find, due to their spatial separation. In our study, bacteria were mostly found singularly, or in groups of up to four cells inside intercellular spaces, although bacterial cells were occasionally found inside other cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In an attempt to better understand the microbial diversity and endosymbiotic microbiota of the pink sugarcane mealybug (PSMB) Saccharicoccus sacchari Cockerell (Homoptera: Pseudococcidae), culture-independent approaches, namely PCR, a 16S rDNA clone library, and temperature gradient gel electrophoresis (TGGE) were used. Previous work has indicated that the acetic acid bacteria Gluconacetobacter sacchari, Gluconacetobacter diazotrophicus, and Gluconacetobacter liquefaciens represent only a small proportion of the microbial community of the PSMB. These findings were supported in this study by TGGE, where no bands representing G. sacchari, G. diazotrophicus, and G. liquefaciens on the acrylamide gel could be observed following electrophoresis, and by a 16S rDNA clone library study, where no clones with the sequence of an acetic acid bacterium were found. Instead, TGGE revealed that the mealybug microbial community was dominated by beta- and gamma-Proteobacteria. The dominant band in TGGE gels found in a majority of the mealybug samples was most similar, according to BLAST analysis, to the beta-symbiont of the craw mealybug Antonina crawii and to Candidatus Tremblaya princeps, an endosymbiont from the mealybug Paracoccus nothofagicola. The sequences of other dominant bands were identified as gamma-Proteobacteria, and were most closely related to uncultured bacterial clones obtained from soil samples. Mealybugs collected from different areas in Queensland, Australia, were found to produce similar TGGE profiles, although there were a few exceptions. A 16S rDNA clone library based on DNA extracted from a mealybug collected from sugarcane in the Burdekin region in Queensland, Australia, indicated very low levels of diversity among mealybug microbial populations. All sequenced clones were most closely related to the same members of the gamma-Proteobacteria, according to BLAST analysis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Grevillea (Proteaceae) is a native Australian plant genus with high commercial value as landscape ornamentals. There has been limited research on the culture and propagation of Australian native species. The effect of indole-3-butyric acid (IBA) on the rooting of G. 'Royal Mantle' and G. 'Coastal Dawn' in winter, spring and summer was evaluated at University of Queensland Gatton, Southern Queensland in order to determine the rooting ability of this species in different seasons. Both Grevillea cultivars showed seasonal rooting. The more difficult-to-root G. 'Coastal Dawn' had a reduced response to IBA application than G. 'Royal Mantle'. Stem and leaf indole-3-acetic acid (IAA) levels were not different between cultivars, therefore rooting ability between the two cultivars does not appear to be due to the differences in endogenous IAA levels. (c) 2005 Elsevier B.V. All rights reserved.