987 resultados para abstract Cauchy problem
Resumo:
We use wave packet mode quantization to compute the creation of massless scalar quantum particles in a colliding plane wave spacetime. The background spacetime represents the collision of two gravitational shock waves followed by trailing gravitational radiation which focus into a Killing-Cauchy horizon. The use of wave packet modes simplifies the problem of mode propagation through the different spacetime regions which was previously studied with the use of monochromatic modes. It is found that the number of particles created in a given wave packet mode has a thermal spectrum with a temperature which is inversely proportional to the focusing time of the plane waves and which depends on the mode trajectory.
Resumo:
We obtain the exact analytical expression, up to a quadrature, for the mean exit time, T(x,v), of a free inertial process driven by Gaussian white noise from a region (0,L) in space. We obtain a completely explicit expression for T(x,0) and discuss the dependence of T(x,v) as a function of the size L of the region. We develop a new method that may be used to solve other exit time problems.
Resumo:
Résumé Suite aux recentes avancées technologiques, les archives d'images digitales ont connu une croissance qualitative et quantitative sans précédent. Malgré les énormes possibilités qu'elles offrent, ces avancées posent de nouvelles questions quant au traitement des masses de données saisies. Cette question est à la base de cette Thèse: les problèmes de traitement d'information digitale à très haute résolution spatiale et/ou spectrale y sont considérés en recourant à des approches d'apprentissage statistique, les méthodes à noyau. Cette Thèse étudie des problèmes de classification d'images, c'est à dire de catégorisation de pixels en un nombre réduit de classes refletant les propriétés spectrales et contextuelles des objets qu'elles représentent. L'accent est mis sur l'efficience des algorithmes, ainsi que sur leur simplicité, de manière à augmenter leur potentiel d'implementation pour les utilisateurs. De plus, le défi de cette Thèse est de rester proche des problèmes concrets des utilisateurs d'images satellite sans pour autant perdre de vue l'intéret des méthodes proposées pour le milieu du machine learning dont elles sont issues. En ce sens, ce travail joue la carte de la transdisciplinarité en maintenant un lien fort entre les deux sciences dans tous les développements proposés. Quatre modèles sont proposés: le premier répond au problème de la haute dimensionalité et de la redondance des données par un modèle optimisant les performances en classification en s'adaptant aux particularités de l'image. Ceci est rendu possible par un système de ranking des variables (les bandes) qui est optimisé en même temps que le modèle de base: ce faisant, seules les variables importantes pour résoudre le problème sont utilisées par le classifieur. Le manque d'information étiquétée et l'incertitude quant à sa pertinence pour le problème sont à la source des deux modèles suivants, basés respectivement sur l'apprentissage actif et les méthodes semi-supervisées: le premier permet d'améliorer la qualité d'un ensemble d'entraînement par interaction directe entre l'utilisateur et la machine, alors que le deuxième utilise les pixels non étiquetés pour améliorer la description des données disponibles et la robustesse du modèle. Enfin, le dernier modèle proposé considère la question plus théorique de la structure entre les outputs: l'intègration de cette source d'information, jusqu'à présent jamais considérée en télédétection, ouvre des nouveaux défis de recherche. Advanced kernel methods for remote sensing image classification Devis Tuia Institut de Géomatique et d'Analyse du Risque September 2009 Abstract The technical developments in recent years have brought the quantity and quality of digital information to an unprecedented level, as enormous archives of satellite images are available to the users. However, even if these advances open more and more possibilities in the use of digital imagery, they also rise several problems of storage and treatment. The latter is considered in this Thesis: the processing of very high spatial and spectral resolution images is treated with approaches based on data-driven algorithms relying on kernel methods. In particular, the problem of image classification, i.e. the categorization of the image's pixels into a reduced number of classes reflecting spectral and contextual properties, is studied through the different models presented. The accent is put on algorithmic efficiency and the simplicity of the approaches proposed, to avoid too complex models that would not be used by users. The major challenge of the Thesis is to remain close to concrete remote sensing problems, without losing the methodological interest from the machine learning viewpoint: in this sense, this work aims at building a bridge between the machine learning and remote sensing communities and all the models proposed have been developed keeping in mind the need for such a synergy. Four models are proposed: first, an adaptive model learning the relevant image features has been proposed to solve the problem of high dimensionality and collinearity of the image features. This model provides automatically an accurate classifier and a ranking of the relevance of the single features. The scarcity and unreliability of labeled. information were the common root of the second and third models proposed: when confronted to such problems, the user can either construct the labeled set iteratively by direct interaction with the machine or use the unlabeled data to increase robustness and quality of the description of data. Both solutions have been explored resulting into two methodological contributions, based respectively on active learning and semisupervised learning. Finally, the more theoretical issue of structured outputs has been considered in the last model, which, by integrating outputs similarity into a model, opens new challenges and opportunities for remote sensing image processing.
Exact solution to the exit-time problem for an undamped free particle driven by Gaussian white noise
Resumo:
In a recent paper [Phys. Rev. Lett. 75, 189 (1995)] we have presented the exact analytical expression for the mean exit time, T(x,v), of a free inertial process driven by Gaussian white noise out of a region (0,L) in space. In this paper we give a detailed account of the method employed and present results on asymptotic properties and averages of T(x,v).
Resumo:
Abstract : This work is concerned with the development and application of novel unsupervised learning methods, having in mind two target applications: the analysis of forensic case data and the classification of remote sensing images. First, a method based on a symbolic optimization of the inter-sample distance measure is proposed to improve the flexibility of spectral clustering algorithms, and applied to the problem of forensic case data. This distance is optimized using a loss function related to the preservation of neighborhood structure between the input space and the space of principal components, and solutions are found using genetic programming. Results are compared to a variety of state-of--the-art clustering algorithms. Subsequently, a new large-scale clustering method based on a joint optimization of feature extraction and classification is proposed and applied to various databases, including two hyperspectral remote sensing images. The algorithm makes uses of a functional model (e.g., a neural network) for clustering which is trained by stochastic gradient descent. Results indicate that such a technique can easily scale to huge databases, can avoid the so-called out-of-sample problem, and can compete with or even outperform existing clustering algorithms on both artificial data and real remote sensing images. This is verified on small databases as well as very large problems. Résumé : Ce travail de recherche porte sur le développement et l'application de méthodes d'apprentissage dites non supervisées. Les applications visées par ces méthodes sont l'analyse de données forensiques et la classification d'images hyperspectrales en télédétection. Dans un premier temps, une méthodologie de classification non supervisée fondée sur l'optimisation symbolique d'une mesure de distance inter-échantillons est proposée. Cette mesure est obtenue en optimisant une fonction de coût reliée à la préservation de la structure de voisinage d'un point entre l'espace des variables initiales et l'espace des composantes principales. Cette méthode est appliquée à l'analyse de données forensiques et comparée à un éventail de méthodes déjà existantes. En second lieu, une méthode fondée sur une optimisation conjointe des tâches de sélection de variables et de classification est implémentée dans un réseau de neurones et appliquée à diverses bases de données, dont deux images hyperspectrales. Le réseau de neurones est entraîné à l'aide d'un algorithme de gradient stochastique, ce qui rend cette technique applicable à des images de très haute résolution. Les résultats de l'application de cette dernière montrent que l'utilisation d'une telle technique permet de classifier de très grandes bases de données sans difficulté et donne des résultats avantageusement comparables aux méthodes existantes.
Resumo:
A common way to model multiclass classification problems is by means of Error-Correcting Output Codes (ECOCs). Given a multiclass problem, the ECOC technique designs a code word for each class, where each position of the code identifies the membership of the class for a given binary problem. A classification decision is obtained by assigning the label of the class with the closest code. One of the main requirements of the ECOC design is that the base classifier is capable of splitting each subgroup of classes from each binary problem. However, we cannot guarantee that a linear classifier model convex regions. Furthermore, nonlinear classifiers also fail to manage some type of surfaces. In this paper, we present a novel strategy to model multiclass classification problems using subclass information in the ECOC framework. Complex problems are solved by splitting the original set of classes into subclasses and embedding the binary problems in a problem-dependent ECOC design. Experimental results show that the proposed splitting procedure yields a better performance when the class overlap or the distribution of the training objects conceal the decision boundaries for the base classifier. The results are even more significant when one has a sufficiently large training size.
Resumo:
The pion spectrum for charged and neutral pions is investigated in pure neutron matter, by letting the pions interact with a neutron Fermi sea in a self-consistent scheme that renormalizes simultaneously the mesons, considered the source of the interaction, and the nucleons. The possibility of obtaining different kinds of pion condensates is investigated with the result that they cannot be reached even for values of the spin-spin correlation parameter, g', far below the range commonly accepted.
Resumo:
RÉSUMÉ Cette thèse porte sur le développement de méthodes algorithmiques pour découvrir automatiquement la structure morphologique des mots d'un corpus. On considère en particulier le cas des langues s'approchant du type introflexionnel, comme l'arabe ou l'hébreu. La tradition linguistique décrit la morphologie de ces langues en termes d'unités discontinues : les racines consonantiques et les schèmes vocaliques. Ce genre de structure constitue un défi pour les systèmes actuels d'apprentissage automatique, qui opèrent généralement avec des unités continues. La stratégie adoptée ici consiste à traiter le problème comme une séquence de deux sous-problèmes. Le premier est d'ordre phonologique : il s'agit de diviser les symboles (phonèmes, lettres) du corpus en deux groupes correspondant autant que possible aux consonnes et voyelles phonétiques. Le second est de nature morphologique et repose sur les résultats du premier : il s'agit d'établir l'inventaire des racines et schèmes du corpus et de déterminer leurs règles de combinaison. On examine la portée et les limites d'une approche basée sur deux hypothèses : (i) la distinction entre consonnes et voyelles peut être inférée sur la base de leur tendance à alterner dans la chaîne parlée; (ii) les racines et les schèmes peuvent être identifiés respectivement aux séquences de consonnes et voyelles découvertes précédemment. L'algorithme proposé utilise une méthode purement distributionnelle pour partitionner les symboles du corpus. Puis il applique des principes analogiques pour identifier un ensemble de candidats sérieux au titre de racine ou de schème, et pour élargir progressivement cet ensemble. Cette extension est soumise à une procédure d'évaluation basée sur le principe de la longueur de description minimale, dans- l'esprit de LINGUISTICA (Goldsmith, 2001). L'algorithme est implémenté sous la forme d'un programme informatique nommé ARABICA, et évalué sur un corpus de noms arabes, du point de vue de sa capacité à décrire le système du pluriel. Cette étude montre que des structures linguistiques complexes peuvent être découvertes en ne faisant qu'un minimum d'hypothèses a priori sur les phénomènes considérés. Elle illustre la synergie possible entre des mécanismes d'apprentissage portant sur des niveaux de description linguistique distincts, et cherche à déterminer quand et pourquoi cette coopération échoue. Elle conclut que la tension entre l'universalité de la distinction consonnes-voyelles et la spécificité de la structuration racine-schème est cruciale pour expliquer les forces et les faiblesses d'une telle approche. ABSTRACT This dissertation is concerned with the development of algorithmic methods for the unsupervised learning of natural language morphology, using a symbolically transcribed wordlist. It focuses on the case of languages approaching the introflectional type, such as Arabic or Hebrew. The morphology of such languages is traditionally described in terms of discontinuous units: consonantal roots and vocalic patterns. Inferring this kind of structure is a challenging task for current unsupervised learning systems, which generally operate with continuous units. In this study, the problem of learning root-and-pattern morphology is divided into a phonological and a morphological subproblem. The phonological component of the analysis seeks to partition the symbols of a corpus (phonemes, letters) into two subsets that correspond well with the phonetic definition of consonants and vowels; building around this result, the morphological component attempts to establish the list of roots and patterns in the corpus, and to infer the rules that govern their combinations. We assess the extent to which this can be done on the basis of two hypotheses: (i) the distinction between consonants and vowels can be learned by observing their tendency to alternate in speech; (ii) roots and patterns can be identified as sequences of the previously discovered consonants and vowels respectively. The proposed algorithm uses a purely distributional method for partitioning symbols. Then it applies analogical principles to identify a preliminary set of reliable roots and patterns, and gradually enlarge it. This extension process is guided by an evaluation procedure based on the minimum description length principle, in line with the approach to morphological learning embodied in LINGUISTICA (Goldsmith, 2001). The algorithm is implemented as a computer program named ARABICA; it is evaluated with regard to its ability to account for the system of plural formation in a corpus of Arabic nouns. This thesis shows that complex linguistic structures can be discovered without recourse to a rich set of a priori hypotheses about the phenomena under consideration. It illustrates the possible synergy between learning mechanisms operating at distinct levels of linguistic description, and attempts to determine where and why such a cooperation fails. It concludes that the tension between the universality of the consonant-vowel distinction and the specificity of root-and-pattern structure is crucial for understanding the advantages and weaknesses of this approach.
Resumo:
Abstract : The human body is composed of a huge number of cells acting together in a concerted manner. The current understanding is that proteins perform most of the necessary activities in keeping a cell alive. The DNA, on the other hand, stores the information on how to produce the different proteins in the genome. Regulating gene transcription is the first important step that can thus affect the life of a cell, modify its functions and its responses to the environment. Regulation is a complex operation that involves specialized proteins, the transcription factors. Transcription factors (TFs) can bind to DNA and activate the processes leading to the expression of genes into new proteins. Errors in this process may lead to diseases. In particular, some transcription factors have been associated with a lethal pathological state, commonly known as cancer, associated with uncontrolled cellular proliferation, invasiveness of healthy tissues and abnormal responses to stimuli. Understanding cancer-related regulatory programs is a difficult task, often involving several TFs interacting together and influencing each other's activity. This Thesis presents new computational methodologies to study gene regulation. In addition we present applications of our methods to the understanding of cancer-related regulatory programs. The understanding of transcriptional regulation is a major challenge. We address this difficult question combining computational approaches with large collections of heterogeneous experimental data. In detail, we design signal processing tools to recover transcription factors binding sites on the DNA from genome-wide surveys like chromatin immunoprecipitation assays on tiling arrays (ChIP-chip). We then use the localization about the binding of TFs to explain expression levels of regulated genes. In this way we identify a regulatory synergy between two TFs, the oncogene C-MYC and SP1. C-MYC and SP1 bind preferentially at promoters and when SP1 binds next to C-NIYC on the DNA, the nearby gene is strongly expressed. The association between the two TFs at promoters is reflected by the binding sites conservation across mammals, by the permissive underlying chromatin states 'it represents an important control mechanism involved in cellular proliferation, thereby involved in cancer. Secondly, we identify the characteristics of TF estrogen receptor alpha (hERa) target genes and we study the influence of hERa in regulating transcription. hERa, upon hormone estrogen signaling, binds to DNA to regulate transcription of its targets in concert with its co-factors. To overcome the scarce experimental data about the binding sites of other TFs that may interact with hERa, we conduct in silico analysis of the sequences underlying the ChIP sites using the collection of position weight matrices (PWMs) of hERa partners, TFs FOXA1 and SP1. We combine ChIP-chip and ChIP-paired-end-diTags (ChIP-pet) data about hERa binding on DNA with the sequence information to explain gene expression levels in a large collection of cancer tissue samples and also on studies about the response of cells to estrogen. We confirm that hERa binding sites are distributed anywhere on the genome. However, we distinguish between binding sites near promoters and binding sites along the transcripts. The first group shows weak binding of hERa and high occurrence of SP1 motifs, in particular near estrogen responsive genes. The second group shows strong binding of hERa and significant correlation between the number of binding sites along a gene and the strength of gene induction in presence of estrogen. Some binding sites of the second group also show presence of FOXA1, but the role of this TF still needs to be investigated. Different mechanisms have been proposed to explain hERa-mediated induction of gene expression. Our work supports the model of hERa activating gene expression from distal binding sites by interacting with promoter bound TFs, like SP1. hERa has been associated with survival rates of breast cancer patients, though explanatory models are still incomplete: this result is important to better understand how hERa can control gene expression. Thirdly, we address the difficult question of regulatory network inference. We tackle this problem analyzing time-series of biological measurements such as quantification of mRNA levels or protein concentrations. Our approach uses the well-established penalized linear regression models where we impose sparseness on the connectivity of the regulatory network. We extend this method enforcing the coherence of the regulatory dependencies: a TF must coherently behave as an activator, or a repressor on all its targets. This requirement is implemented as constraints on the signs of the regressed coefficients in the penalized linear regression model. Our approach is better at reconstructing meaningful biological networks than previous methods based on penalized regression. The method is tested on the DREAM2 challenge of reconstructing a five-genes/TFs regulatory network obtaining the best performance in the "undirected signed excitatory" category. Thus, these bioinformatics methods, which are reliable, interpretable and fast enough to cover large biological dataset, have enabled us to better understand gene regulation in humans.
Resumo:
We show that the dispersal routes reconstruction problem can be stated as an instance of a graph theoretical problem known as the minimum cost arborescence problem, for which there exist efficient algorithms. Furthermore, we derive some theoretical results, in a simplified setting, on the possible optimal values that can be obtained for this problem. With this, we place the dispersal routes reconstruction problem on solid theoretical grounds, establishing it as a tractable problem that also lends itself to formal mathematical and computational analysis. Finally, we present an insightful example of how this framework can be applied to real data. We propose that our computational method can be used to define the most parsimonious dispersal (or invasion) scenarios, which can then be tested using complementary methods such as genetic analysis.
Resumo:
ABSTRACT BACKGROUND: Chronic mountain sickness (CMS) is a major public health problem characterized by exaggerated hypoxemia and erythrocytosis. In more advanced stages, these patients often present functional and structural changes of the pulmonary circulation, but there is little information on the systemic circulation. In patients suffering from diseases associated with chronic hypoxemia at low altitude, systemic vascular function is altered. We hypothesized that patients with CMS display systemic vascular dysfunction that may predispose them to increased systemic cardiovascular morbidity. METHODS: To test this hypothesis, we assessed systemic endothelial function (by flow- mediated dilation, FMD), arterial stiffness and carotid intima-media thickness and arterial oxygenation (SaO(2)) in 23 patients with CMS without additional classical cardiovascular risk factors and 27 age-matched healthy mountain dwellers born and permanently living at 3600 m. For some analyses subjects were classified according to baseline SaO(2) quartiles; FMD of the highest quartile subgroup (SaO(2) ≥90%) was used as reference value for post-hoc comparisons. RESULTS: Patients with CMS displayed marked systemic vascular dysfunction, as evidenced by impaired FMD (4.6±1.2 vs. 7.6±1.9%, CMS vs. controls, P<0.0001), greater pulse wave velocity (10.6±2.1 vs. 8.4±1.0 m/s, P<0.001) and carotid intima-media thickness (690±120 vs. 570±110 μm, P=0.001). A positive relationship existed between SaO(2) and FMD (r=0.62, P<0.0001). Oxygen inhalation improved (P<0.001), but did not normalize FMD in patients with CMS; whereas it normalized FMD in hypoxemic controls (SaO(2) <90%) and had no detectable effect in normoxemic (SaO(2) ≥90%) control subjects. CONCLUSIONS: Patients with CMS display marked systemic vascular dysfunction. Structural and functional alterations contribute to this problem that may predispose these patients to premature cardiovascular disease. Clinical Trials Gov Registration # NCT01182792.