935 resultados para abiotic reactions
Resumo:
Mild heating of the phosphidotriosmium cluster [Os3H(CO)10(µ2-PH2)](1) with [Os3(CO)12 –n(MeCN)n](n= 1 or 2) gives high yields of the (µ3-PH) bridged hexaosmium clusters (2) and (3); reactions of (2) and (3) with bases and X-ray structure analyses of (3) and of (6), which was obtained from (3) and MeO– followed by acid treatment are described.
Resumo:
Alkenyl (CHCH2 or CFCF2) or alkynyl (CCPh) derivatives of trimethyltin are shown to be superior to lithium or magnesium reagents for the synthesis of corresponding mono-organoplatinum(II) species by metathesis (L = SnMe3R +cis-[PtCl2L2]→trans-[PtRClL2]+ SnMe3Cl tertiary phosphine). The reactivity order for SnMe3R is R = CCPh > CFCF2 > CHCH2. This order is also found for oxidative addition of SnMe3R to Pt0 to give cis-[PtRL2(SnMe3)]. When the latter complex (R = CHCH2) reacts with X2 or MeX further oxidative addition occurs exclusively at the platinum centre. Aromatic isonitriles (R′NC)co-ordinate to the platinum and give insertion products trans-[Pt{C(CHCH2)= NR′}ClL2] on heating or carbene complexes with NBunH2. The alkynyl trans-[Pt(CCPh)ClL2] also forms 1 :1 adducts with R′NC and carbene complexes therefrom, but no insertion products. Spectroscopic data for the new complexes are presented.
Resumo:
Trimethyltin compounds Me3SnR(R = CHCH2, CFCF2, or CCPh) are selective reagents for the synthesis of unsaturated hydrocarbyl derivatives such as trans-PtCl(R)(PPhEt2)2, by R/Cl exchange or oxidative addition (e.g., to Pt(PPh3)3); single crystal X-ray analyses of two such compounds (R = CHCH2 or CCPh) show that the trans-influence of R has only a low sensitivity to hybridisation at carbon, with sp3 > sp ⩾ sp2.
Resumo:
The compounds trans-[PtBr{C(C10H15)CH2}(PEt3)2](1)(C10H15= adamant-1-yl), trans-[MBr{C(C10H7)CMe2}(PEt3)2][M = Pd (2) or Pt (3); C10H7= naphth-1-yl], and trans-[MBr{C(Ph)CMe2}(PEt3)2][M = Pd (4) or Pt (5)] have been prepared from Grignard [for (2) and (3)] or lithium reagents [for (1), (4), and (5)] and appropriate dichlorobis(phosphine)metal derivatives. Full single-crystal X-ray data are reported for (1) and (3), and reveal unusually long Pt–C(sp2) bonds. Insertion reactions into these M–C bonds occur with MeNC [for (1), (3), and (5)], and with CO [for (1) and (3)]; the latter, the first reported insertion into a Pt–C(sp2) bond, occurs under mild conditions as expected for the abnormally long M–C bonds.
Resumo:
We present a novel kinetic multi-layer model for gas-particle interactions in aerosols and clouds (KM-GAP) that treats explicitly all steps of mass transport and chemical reaction of semi-volatile species partitioning between gas phase, particle surface and particle bulk. KM-GAP is based on the PRA model framework (Pöschl-Rudich-Ammann, 2007), and it includes gas phase diffusion, reversible adsorption, surface reactions, bulk diffusion and reaction, as well as condensation, evaporation and heat transfer. The size change of atmospheric particles and the temporal evolution and spatial profile of the concentration of individual chemical species can be modelled along with gas uptake and accommodation coefficients. Depending on the complexity of the investigated system, unlimited numbers of semi-volatile species, chemical reactions, and physical processes can be treated, and the model shall help to bridge gaps in the understanding and quantification of multiphase chemistry and microphysics in atmo- spheric aerosols and clouds. In this study we demonstrate how KM-GAP can be used to analyze, interpret and design experimental investigations of changes in particle size and chemical composition in response to condensation, evaporation, and chemical reaction. For the condensational growth of water droplets, our kinetic model results provide a direct link between laboratory observations and molecular dynamic simulations, confirming that the accommodation coefficient of water at 270 K is close to unity. Literature data on the evaporation of dioctyl phthalate as a function of particle size and time can be reproduced, and the model results suggest that changes in the experimental conditions like aerosol particle concentration and chamber geometry may influence the evaporation kinetics and can be optimized for eðcient probing of specific physical effects and parameters. With regard to oxidative aging of organic aerosol particles, we illustrate how the formation and evaporation of volatile reaction products like nonanal can cause a decrease in the size of oleic acid particles exposed to ozone.
Resumo:
The irreversible binding of selected sulfur-containing flavor compounds to proteins was investigated in aqueous solutions containing ovalbumin and a mixture of disulfides (diethyl, dipropyl, dibutyl, diallyl, and 2-furfuryl methyl) using solid-phase micro-extraction (SPME). In systems which had not been heated, the recovery of disulfides from the headspace above the protein at the native pH (6.7) was similar to that from an aqueous blank. However, significant losses were observed when the pH of the solution was increased to 8.0. When the protein was denatured by heating, much greater losses were observed and some free thiols were produced. In similar heat-denatured systems at pH 2.0, no losses of disulfides were observed. Disulfides containing allyl or furfuryl groups were more reactive than saturated alkyl disulfides. Interchange reactions between protein sulfhydryl groups and the disulfides are believed to be responsible for the loss of the disulfides.
Resumo:
Traditionally, siting and sizing decisions for parks and reserves reflected ecological characteristics but typically failed to consider ecological costs created from displaced resource collection, welfare costs on nearby rural people, and enforcement costs. Using a spatial game-theoretic model that incorporates the interaction of socioeconomic and ecological settings, we show how incorporating more recent mandates that include rural welfare and surrounding landscapes can result in very different optimal sizing decisions. The model informs our discussion of recent forest management in Tanzania, reserve sizing and siting decisions, estimating reserve effectiveness, and determining patterns of avoided forest degradation in Reduced Emissions from Deforestation and Forest Degradation programs.
Resumo:
The authors demonstrate four real-time reactive responses to movement in everyday scenes using an active head/eye platform. They first describe the design and realization of a high-bandwidth four-degree-of-freedom head/eye platform and visual feedback loop for the exploration of motion processing within active vision. The vision system divides processing into two scales and two broad functions. At a coarse, quasi-peripheral scale, detection and segmentation of new motion occurs across the whole image, and at fine scale, tracking of already detected motion takes place within a foveal region. Several simple coarse scale motion sensors which run concurrently at 25 Hz with latencies around 100 ms are detailed. The use of these sensors are discussed to drive the following real-time responses: (1) head/eye saccades to moving regions of interest; (2) a panic response to looming motion; (3) an opto-kinetic response to continuous motion across the image and (4) smooth pursuit of a moving target using motion alone.
Resumo:
We present a novel kinetic multi-layer model for gas-particle interactions in aerosols and clouds (KMGAP) that treats explicitly all steps of mass transport and chemical reaction of semi-volatile species partitioning between gas phase, particle surface and particle bulk. KMGAP is based on the PRA model framework (P¨oschl-Rudich- Ammann, 2007), and it includes gas phase diffusion, reversible adsorption, surface reactions, bulk diffusion and reaction, as well as condensation, evaporation and heat transfer. The size change of atmospheric particles and the temporal evolution and spatial profile of the concentration of individual chemical species can be modeled along with gas uptake and accommodation coefficients. Depending on the complexity of the investigated system and the computational constraints, unlimited numbers of semi-volatile species, chemical reactions, and physical processes can be treated, and the model shall help to bridge gaps in the understanding and quantification of multiphase chemistry and microphysics in atmospheric aerosols and clouds. In this study we demonstrate how KM-GAP can be used to analyze, interpret and design experimental investigations of changes in particle size and chemical composition in response to condensation, evaporation, and chemical reaction. For the condensational growth of water droplets, our kinetic model results provide a direct link between laboratory observations and molecular dynamic simulations, confirming that the accommodation coefficient of water at 270K is close to unity (Winkler et al., 2006). Literature data on the evaporation of dioctyl phthalate as a function of particle size and time can be reproduced, and the model results suggest that changes in the experimental conditions like aerosol particle concentration and chamber geometry may influence the evaporation kinetics and can be optimized for efficient probing of specific physical effects and parameters. With regard to oxidative aging of organic aerosol particles, we illustrate how the formation and evaporation of volatile reaction products like nonanal can cause a decrease in the size of oleic acid particles exposed to ozone.
Resumo:
The controls on aboveground community composition and diversity have been extensively studied, but our understanding of the drivers of belowground microbial communities is relatively lacking, despite their importance for ecosystem functioning. In this study, we fitted statistical models to explain landscape-scale variation in soil microbial community composition using data from 180 sites covering a broad range of grassland types, soil and climatic conditions in England. We found that variation in soil microbial communities was explained by abiotic factors like climate, pH and soil properties. Biotic factors, namely community- weighted means (CWM) of plant functional traits, also explained variation in soil microbial communities. In particular, more bacterial-dominated microbial communities were associated with exploitative plant traits versus fungal-dominated communities with resource-conservative traits, showing that plant functional traits and soil microbial communities are closely related at the landscape scale.
Resumo:
Biofilm formation on abiotic surfaces may provide a source of microbial contamination and may also enhance microbial environmental survival. The role of fimbrial expression by Shiga toxin-producing Escherichia coli (STEC) in biofilm formation is poorly understood. This study aimed to investigate the role of STEC type 1 and curli fimbriae in adhesion to and biofilm formation on abiotic surfaces. None of 13 O157:H7 isolates expressed either fimbrial type whereas 11 of 13 and 5 of 13 non-O157 STEC elaborated type 1 fimbriae and curli fimbriae, respectively. Mutants made by allelic exchange of a diarrhoeal non-O157 STEC isolate, O128:H2 (E41509), unable to elaborate type 1 and curli fimbriae were made for adherence and biofilm assays. Elaboration of type 1 fimbriae was necessary for the adhesion to abiotic surfaces whereas curliation was associated with both adherence and subsequent biofilm formation. STEC O157:H7 adhered to thermanox and glass but poorly to polystyrene. Additionally, STEC O157:H7 failed to form biofilms. These data indicate that certain STEC isolates are able to form biofilms and that the elaboration of curli fimbriae may enhance biofilm formation leading to possible long-term survival and a potential source of human infection.
Resumo:
Reaction of salicylaldehyde semicarbazone (L-1), 2-hydroxyacetophenone semicarbazone (L-2), and 2-hydroxynaphthaldehyde semicarbazone (L-3) with [Pd(PPh3)(2)Cl-2] in ethanol in the presence of a base (NEt3) affords a family of yellow complexes (1a, 1b and 1c, respectively). In these complexes the semicarbazone ligands are coordinated to palladium in a rather unusual tridentate ONN-mode, and a PPh3 also remains coordinated to the metal center. Crystal structures of the 1b and 1c complexes have been determined, and structure of 1a has been optimized by a DFT method. In these complexes two potential donor sites of the coordinated semicarbazone, viz. the hydrazinic nitrogen and carbonylic oxygen, remain unutilized. Further reaction of these palladium complexes (1a, 1b and 1c) with [Ru(PPh3)(2)(CO)(2)Cl-2] yields a family of orange complexes (2a, 2b and 2c, respectively). In these heterodinuclear (Pd-Ru) complexes, the hydrazinic nitrogen (via dissociation of the N-H proton) and the carbonylic oxygen from the palladium-containing fragment bind to the ruthenium center by displacing a chloride and a carbonyl. Crystal structures of 2a and 2c have been determined, and the structure of 2b has been optimized by a DFT method. All the complexes show characteristic H-1 NMR spectra and, intense absorptions in the visible and ultraviolet region. Cyclic voltammetry on all the complexes shows an irreversible oxidation of the coordinated semicarbazone within 0.86-0.93 V vs. SCE, and an irreversible reduction of the same ligand within -0.96 to -1.14 V vs. SCE. Both the mononuclear (1a, 1b and 1c) and heterodinuclear (2a, 2b and 2c) complexes are found to efficiently catalyze Suzuki, Heck and Sonogashira type C-C coupling reactions utilizing a variety of aryl bromides and aryl chlorides. The Pd-Ru complexes (2a, 2b and 2c) are found to be better catalysts than the Pd complexes (1a, 1b and 1c) for Suzuki and Heck coupling reactions.
Resumo:
The relative rate method has been used to measure the room-temperature rate constants for the gasphase reactions of ozone and NO3 with selected monoterpenes and cyclo-alkenes with structural similarities to monoterpenes. Measurements were carried out at 298 ! 2 K and 760 ! 10 Torr. The following rate constants (in units of 10"18 cm3 molecule"1 s"1) were obtained for the reaction with ozone: methyl cyclohexene (132 ! 17), terpinolene (1290 ! 360), ethylidene cyclohexane (223 ! 57), norbornene (860 ! 240), t-butyl isopropylidene cyclohexane (1500 ! 460), cyclopentene (543 ! 94), cyclohexene (81 ! 18), cyclooctene (451 ! 66), dicyclopentadiene (1460 ! 170) and a-pinene (107 ! 13). For the reaction with NO3 the rate constants obtained (in units of 10"12 cm3 molecule"1 s"1) were: methyl cyclohexene (7.92 ! 0.95), terpinolene (47.9 ! 4.0), ethylidene cyclohexane (4.30 ! 0.24), norbornene (0.266 ! 0.029), cyclohexene (0.540 ! 0.017), cyclooctene (0.513 ! 0.029), dicyclopentadiene (1.20 ! 0.10) and a-pinene (5.17 ! 0.62). Errors are quoted as the root mean square of the statistical error (95% con!dence) and the quoted error in the rate constant for the reference compound. Combining these results with previous studies, new recommendations for the rate constants are presented. Molecular orbital energies were calculated for each alkene and the kinetic data are discussed in terms of the deviation from the structureeactivity relationship obtained from the rate constants for a series of simple alkenes. Lifetimes with respect to key initiators of atmospheric oxidation have been calculated suggesting that the studied reactions play dominant roles in the night-time removal of these compounds from the atmosphere.
Resumo:
Time-resolved kinetic studies of silylene, SiH2, generated by laser flash photolysis of 1-silacyclopent-3-ene and phenylsilane, have been carried out to obtain rate constants for its bimolecular reactions with methanol, ethanol, 1-propanol, 1-butanol and 2-methyl-1-butanol. The reactions were studied in the gas phase over the pressure range 1-100 Torr in SF6 bath gas, at room temperature. In the study with methanol several buffer gases were used. All five reactions showed pressure dependences characteristic of third body assisted association reactions. The rate constant pressure dependences were modelled using RRKM theory, based on Eo values of the association complexes obtained by ab initio calculation (G3 level). Transition state models were adjusted to fit experimental fall-off curves and extrapolated to obtain k∞ values in the range 1.9 to 4.5 × 10-10 cm3 molecule-1 s-1. These numbers, corresponding to the true bimolecular rate constants, indicate efficiencies of between 16 and 67% of the collision rates for these reactions. In the reaction of SiH2 + MeOH there is a small kinetic component to the rate which is second order in MeOH (at low total pressures). This suggests an additional catalysed reaction pathway, which is supported by the ab initio calculations. These calculations have been used to define specific MeOH-for-H2O substitution effects on this catalytic pathway. Where possible our experimental and theoretical results are compared with those of previous studies.