957 resultados para ZnSxTe1-x mixed crystals
Resumo:
This paper describes an approach to investigate the adoption of Web 2.0 in the classroom using a mixed methods study. By using a combination of qualitative or quantitative data collection and analysis techniques, we attempt to synergize the results and provide a more valid understanding of Web 2.0 adoption for learning by both teachers and students. This approach is expected to yield a better holistic view on the adoption issues associated with the e-learning 2.0 concept in current higher education as opposed to single method studies done previously. This paper also presents some early findings of e-learning 2.0 adoption using this research method
Resumo:
Metrics such as passengers per square metre have been developed to define optimum or crowded rail passenger density. Whilst such metrics are important to operational procedures, service evaluation and reporting, they fail to fully capture and convey the ways in which passengers experience crowded situations. This paper reports findings from a two year study of rail passenger crowding in five Australian capital cities which involved a novel mixed-methodology including ethnography, focus groups and an online stated preference choice experiment. The resulting data address the following four fundamental research questions: 1) to what extent are Australian rail passengers concerned by crowding, 2) what conditions exacerbate feelings of crowdedness, 3) what conditions mitigate feelings of crowdedness, and 4) how can we usefully understand passengers’ experiences of crowdedness? It concludes with some observations on the significance and implications of these findings for customer service provision. The findings outlined in this paper demonstrate that the experience of crowdedness (including its tolerance) cannot be understood in isolation from other customer services issues such as interior design, quality of environment, safety and public health concerns. It is hypothesised that tolerance of crowding will increase alongside improvements to overall customer service. This was the first comprehensive study of crowding in the Australian rail industry.
Resumo:
This paper addresses the problem of scheduling a cane transport system involving both rail transport and road transport, where the road transport operates from several sidings in the rail network. An iterative approach for scheduling the rail transport system has been developed using existing rail transport scheduling tools. The assumption that harvesters serviced by road transport are effectively operating from the rail siding from which their bins are supplied seems a reasonable starting point for the analysis. There is a need to manually modify the schedule to take into account the road transport schedule to ensure that full bins are not collected before the road transport system delivers them back to the rail siding.
Resumo:
Bus Rapid Transit (BRT) station is the interface between passenger and service. The station is crucial to line operation as it is typically the only location where buses can pass each other. Congestion may occur here when buses maneuvering into and out of the platform lane interfere with bus flow, or when a queue of buses forms upstream of the platform lane blocking the passing lane. However, some systems include operation where express buses pass the critical station, resulting in a proportion of non stopping buses. It is important to understand the operation of the critical busway station under this type of operation, as it affects busway line capacity. This study uses micro simulation to treat the BRT station operation and to analyze the relationship between station Limit state bus capacity (B_ls), Total Bus Capacity (B_ttl). First, the simulation model is developed for Limit state scenario and then a mathematical model is defined, calibrated for a specified range of controlled scenarios of mean and coefficient of variation of dwell time. Thereafter, the proposed B_ls model is extended to consider non stopping buses and B_ttlmodel is defined. The proposed models provides better understanding to the BRT line capacity and is useful for transit authorities for designing better BRT operation.
Resumo:
X-ray microtomography (micro-CT) with micron resolution enables new ways of characterizing microstructures and opens pathways for forward calculations of multiscale rock properties. A quantitative characterization of the microstructure is the first step in this challenge. We developed a new approach to extract scale-dependent characteristics of porosity, percolation, and anisotropic permeability from 3-D microstructural models of rocks. The Hoshen-Kopelman algorithm of percolation theory is employed for a standard percolation analysis. The anisotropy of permeability is calculated by means of the star volume distribution approach. The local porosity distribution and local percolation probability are obtained by using the local porosity theory. Additionally, the local anisotropy distribution is defined and analyzed through two empirical probability density functions, the isotropy index and the elongation index. For such a high-resolution data set, the typical data sizes of the CT images are on the order of gigabytes to tens of gigabytes; thus an extremely large number of calculations are required. To resolve this large memory problem parallelization in OpenMP was used to optimally harness the shared memory infrastructure on cache coherent Non-Uniform Memory Access architecture machines such as the iVEC SGI Altix 3700Bx2 Supercomputer. We see adequate visualization of the results as an important element in this first pioneering study.
Resumo:
Composite TiO2/acid leached serpentine tailings (AST) were synthesized through the hydrolysis–deposition method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energydispersive X-ray spectrometry (EDS), Fourier-transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and surface area measurement (BET). The XRD analysis showed that TiO2 coated on the surface of acid leached serpentine tailings was mixed crystal phases of rutile and anatase, the grain size of which is 10–30 nm. SEM, TEM, and EDS analysis exhibited that nano-TiO2 particles were deposited on the surface and internal cavities of acid leaching serpentine tailings. The XPS and FT-IR analysis demonstrated that the coating process of TiO2 on AST was a physical adsorption process. The large specific surface area, porous structure, and plentiful surface hydroxyl group of TiO2/AST composite resulted in the high adsorption capacity of Cr(VI). The experimental results demonstrated that initial concentration of Cr(VI), the amount of the catalyst, and pH greatly influenced the removal efficiency of Cr(VI). The removal kinetics of Cr(VI) at a relative low initial concentration was fitted well with Langmuir–Hinshelwood kinetics model with R2 value of about unity. The asprepared composites exhibited strong adsorption and photocatalytic capacity for the removal of Cr(VI), and the possible photocatalytic reduction mechanism was studied. The photodecomposition of Cr(VI) was as high as 95% within 2 h, and the reusability of the photocatalysis was proven.
Resumo:
Overview: - Development of mixed methods research - Benefits and challenges of “mixing” - Different models - Good design - Two examples - How to report? - Have a go!
Resumo:
The host location behaviour of foraging caterpillars has received little attention, despite the wealth of theoretical and empirical studies that have been directed at this behavioural trait in adult Lepidoptera. Here, we study caterpillars of the moth Heliothis punctifera Walker (Lepidoptera: Noctuidae), which inhabits the arid inland desert areas of Australia. Caterpillars of this species consume many flowerheads before completing development and can be observed moving across the sand in search of new hosts. Consequently, if host location behaviour favours attraction to certain plant species, it might be expected to influence the distribution and abundance of caterpillars in the field. We present field data showing that H. punctifera caterpillars are unevenly distributed throughout mixed patches of two of its host species, with a higher abundance on Senecio gregorii F. Muell., the annual yellow top, compared to Myriocephalus stuartii (F. Muell. & Sond.) Benth., the poached egg daisy (both Asteraceae). Using laboratory studies, we test whether this distribution may, in part, be due to host location behaviour of caterpillars. Our results show that caterpillars exhibit a preference for locating S. gregorii in their pre- and post-contact foraging behaviour. In addition, our results provide evidence that feeding history plays a role in host location behaviour in this insect. We propose that key features of the desert environment and the ecology of H. punctifera would favour adaptations to host location behaviour by immatures.
Resumo:
In this study x-ray CT has been used to produce a 3D image of an irradiated PAGAT gel sample, with noise-reduction achieved using the ‘zero-scan’ method. The gel was repeatedly CT scanned and a linear fit to the varying Hounsfield unit of each pixel in the 3D volume was evaluated across the repeated scans, allowing a zero-scan extrapolation of the image to be obtained. To minimise heating of the CT scanner’s x-ray tube, this study used a large slice thickness (1 cm), to provide image slices across the irradiated region of the gel, and a relatively small number of CT scans (63), to extrapolate the zero-scan image. The resulting set of transverse images shows reduced noise compared to images from the initial CT scan of the gel, without being degraded by the additional radiation dose delivered to the gel during the repeated scanning. The full, 3D image of the gel has a low spatial resolution in the longitudinal direction, due to the selected scan parameters. Nonetheless, important features of the dose distribution are apparent in the 3D x-ray CT scan of the gel. The results of this study demonstrate that the zero-scan extrapolation method can be applied to the reconstruction of multiple x-ray CT slices, to provide useful 2D and 3D images of irradiated dosimetry gels.
Resumo:
Nano-tin oxide was deposited on the surface of wollastonite using the mixed solution including stannic chloride pentahydrate precursor and wollastonite by a hydrolysis precipitation process. The antistatic properties of the wollastonite materials under different calcined conditions and composite materials (nano-SnO2/wollastonite, SW) were measured by rubber sheeter and four-point probe (FPP) sheet resistance measurement. Effects of hydrolysis temperature and time, calcination temperature and time, pH value and nano-SnO2 coating amount on the resistivity of SW powders were studied, and the optimum experimental conditions were obtained. The microstructure and surface properties of wollastonite, precipitate and SW were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDS), specific surface area analyzer (BET), thermogravimetry (TG), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and Fourier translation infrared spectroscopy (FTIR) respectively. The results showed that the nano-SnO2/wollastonite composite materials under optimum preparation conditions showed better antistatic properties, the resistivity of which was reduced from 1.068 × 104 Ω cm to 2.533 × 103 Ω cm. From TG and XRD analysis, the possible mechanism for coating of SnO2 nanoparticles on the surface of wollastonite was proposed. The infrared spectrum indicated that there were a large number of the hydroxyl groups on the surface of wollastonite. This is beneficial to the heterogeneous nucleation reaction. Through morphology, EDS and XPS analysis, the surface of wollastonite fiber was coated with a layer of 10–15 nm thickness of tin oxide grains the distribution of which was uniform.
Resumo:
The cardiac catheterisation laboratory (CCL) is a specialised medical radiology facility where both chronic-stable and life-threatening cardiovascular illness is evaluated and treated. Although there are many potential sources of discomfort and distress associated with procedures performed in the CCL, a general anaesthetic is not usually required. For this reason, an anaesthetist is not routinely assigned to the CCL. Instead, to manage pain, discomfort and anxiety during the procedure, nurses administer a combination of sedative and analgesic medications according to direction from the cardiologist performing the procedure. This practice is referred to as nurse-administered procedural sedation and analgesia (PSA). While anecdotal evidence suggested that nurse-administered PSA was commonly used in the CCL, it was clear from the limited information available that current nurse-led PSA administration and monitoring practices varied and that there was contention around some aspects of practice including the type of medications that were suitable to be used and the depth of sedation that could be safely induced without an anaesthetist present. The overall aim of the program of research presented in this thesis was to establish an evidence base for nurse-led sedation practices in the CCL context. A sequential mixed methods design was used over three phases. The objective of the first phase was to appraise the existing evidence for nurse-administered PSA in the CCL. Two studies were conducted. The first study was an integrative review of empirical research studies and clinical practice guidelines focused on nurse-administered PSA in the CCL as well as in other similar procedural settings. This was the first review to systematically appraise the available evidence supporting the use of nurse-administered PSA in the CCL. A major finding was that, overall, nurse-administered PSA in the CCL was generally deemed to be safe. However, it was concluded from the analysis of the studies and the guidelines that were included in the review, that the management of sedation in the CCL was impacted by a variety of contextual factors including local hospital policy, workforce constraints and cardiologists’ preferences for the type of sedation used. The second study in the first phase was conducted to identify a sedation scale that could be used to monitor level of sedation during nurse-administered PSA in the CCL. It involved a structured literature review and psychometric analysis of scale properties. However, only one scale was found that was developed specifically for the CCL, which had not undergone psychometric testing. Several weaknesses were identified in its item structure. Other sedation scales that were identified were developed for the ICU. Although these scales have demonstrated validity and reliability in the ICU, weaknesses in their item structure precluded their use in the CCL. As findings indicated that no existing sedation scale should be applied to practice in the CCL, recommendations for the development and psychometric testing of a new sedation scale were developed. The objective of the second phase of the program of research was to explore current practice. Three studies were conducted in this phase using both quantitative and qualitative research methods. The first was a qualitative explorative study of nurses’ perceptions of the issues and challenges associated with nurse-administered PSA in the CCL. Major themes emerged from analysis of the qualitative data regarding the lack of access to anaesthetists, the limitations of sedative medications, the barriers to effective patient monitoring and the impact that the increasing complexity of procedures has on patients' sedation requirements. The second study in Phase Two was a cross-sectional survey of nurse-administered PSA practice in Australian and New Zealand CCLs. This was the first study to quantify the frequency that nurse-administered PSA was used in the CCL setting and to characterise associated nursing practices. It was found that nearly all CCLs utilise nurse-administered PSA (94%). Of note, by characterising nurse-administered PSA in Australian and New Zealand CCLs, several strategies to improve practice, such as setting up protocols for patient monitoring and establishing comprehensive PSA education for CCL nurses, were identified. The third study in Phase Two was a matched case-control study of risk factors for impaired respiratory function during nurse-administered PSA in the CCL setting. Patients with acute illness were found to be nearly twice as likely to experience impaired respiratory function during nurse-administered PSA (OR=1.78; 95%CI=1.19-2.67; p=0.005). These significant findings can now be used to inform prospective studies investigating the effectiveness of interventions for impaired respiratory function during nurse-administered PSA in the CCL. The objective of the third and final phase of the program of research was to develop recommendations for practice. To achieve this objective, a synthesis of findings from the previous phases of the program of research informed a modified Delphi study, which was conducted to develop a set of clinical practice guidelines for nurse-administered PSA in the CCL. The clinical practice guidelines that were developed set current best practice standards for pre-procedural patient assessment and risk screening practices as well as the intra and post-procedural patient monitoring practices that nurses who administer PSA in the CCL should undertake in order to deliver safe, evidence-based and consistent care to the many patients who undergo procedures in this setting. In summary, the mixed methods approach that was used clearly enabled the research objectives to be comprehensively addressed in an informed sequential manner, and, as a consequence, this thesis has generated a substantial amount of new knowledge to inform and support nurse-led sedation practice in the CCL context. However, a limitation of the research to note is that the comprehensive appraisal of the evidence conducted, combined with the guideline development process, highlighted that there were numerous deficiencies in the evidence base. As such, rather than being based on high-level evidence, many of the recommendations for practice were produced by consensus. For this reason, further research is required in order to ascertain which specific practices result in the most optimal patient and health service outcomes. Therefore, along with necessary guideline implementation and evaluation projects, post-doctoral research is planned to follow up on the research gaps identified, which are planned to form part of a continuing program of research in this field.
Resumo:
Modernized GPS and GLONASS, together with new GNSS systems, BeiDou and Galileo, offer code and phase ranging signals in three or more carriers. Traditionally, dual-frequency code and/or phase GPS measurements are linearly combined to eliminate effects of ionosphere delays in various positioning and analysis. This typical treatment method has imitations in processing signals at three or more frequencies from more than one system and can be hardly adapted itself to cope with the booming of various receivers with a broad variety of singles. In this contribution, a generalized-positioning model that the navigation system independent and the carrier number unrelated is promoted, which is suitable for both single- and multi-sites data processing. For the synchronization of different signals, uncalibrated signal delays (USD) are more generally defined to compensate the signal specific offsets in code and phase signals respectively. In addition, the ionospheric delays are included in the parameterization with an elaborate consideration. Based on the analysis of the algebraic structures, this generalized-positioning model is further refined with a set of proper constrains to regularize the datum deficiency of the observation equation system. With this new model, uncalibrated signal delays (USD) and ionospheric delays are derived for both GPS and BeiDou with a large dada set. Numerical results demonstrate that, with a limited number of stations, the uncalibrated code delays (UCD) are determinate to a precision of about 0.1 ns for GPS and 0.4 ns for BeiDou signals, while the uncalibrated phase delays (UPD) for L1 and L2 are generated with 37 stations evenly distributed in China for GPS with a consistency of about 0.3 cycle. Extra experiments concerning the performance of this novel model in point positioning with mixed-frequencies of mixed-constellations is analyzed, in which the USD parameters are fixed with our generated values. The results are evaluated in terms of both positioning accuracy and convergence time.
Resumo:
The composition of a series of hydroxycarbonate precursors to copper/zinc oxide methanol synthesis catalysts prepared under conditions reported as optimum for catalytic activity has been studied. Techniques employed included thermogravimetry (TG), temperature-programmed decomposition (TPD), X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), and Raman and FTIR spectroscopies. Evidence was obtained for various structural phases including hydrozincite, copper hydrozincite, aurichalcite, zincian malachite and malachite (the concentrations of which depended upon the exact Cu/Zn ratio used). Significantly, previously reported phases such as gerhardite and rosasite were not identified when catalysts were synthesized at optimum solution pH and temperature values, and after appropriate aging periods. Calcination of the hydroxycarbonate precursors resulted in the formation of catalysts containing an intimate mixture of copper and zinc oxides. Temperature-programmed reduction (TPR) revealed that a number of discrete copper oxide species were present in the catalyst, the precise concentrations of which were determined to be related to the structure of the catalyst precursor. Copper hydrozincite decomposed to give zinc oxide particles decorated by highly dispersed, small copper oxide species. Aurichalcite appeared to result ultimately in the most intimately mixed catalyst structure whereas zincian malachite decomposed to produce larger copper oxide and zinc oxide grains. The reason for the stabilization of small copper oxide and zinc oxide clusters by aurichalcite was investigated by using carefully selected calcination temperatures. It was concluded that the unique formation of an 'anion-modified' oxide resulting from the initial decomposition stage of aurichalcite was responsible for the 'binding' of copper species to zinc moieties.