897 resultados para ZINC TUBULAR REABSORPTION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study of the interference of Zn2+ ions on phenol degradation by Fenton reaction (Fe2+/Fe3(+) + H2O2) is reported. One of the first intermediates formed in the reaction, catechol, can reduce Fe3+ to Fe2+ and, in the presence of H2O2 initiates an efficient catalytic redox cycle. In the initial stages of the reaction, this catechol-mediated cycle becomes the principal route of thermal degradation of phenol and its oxidation products. The Zn2+ ion addition enhances the persistence time of catechol, probably by stabilization of the corresponding semiquinone radical via complexation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sewage sludge has been used to fertilize coffee, increasing the risk of metal contamination in this crop. The aim of this work was to study the effects of Cd, Zn and Ni in adult coffee plants growing under field conditions. Seven-year-old coffee plants growing in the field received one of three;loses of Cd, Zn or Ni: 15,45 and 90 g Cd plant(-1); 35, 105 and 210 g Ni plant(-1); and 100, 300 and 600 g Zn plant(-1), with all three metals in the form of sulphate salts. After three months, we noticed good penetration of the three metals into the soil, especially in the first 50 cm, which is the region where most coffee plant roots are concentrated. Leaf concentrations of K, Ca, Mg, S, B, Cu, Fe and Mn were nor affected. N levels did not change with the application of Ni or Zn but were reduced with either 45 or 90 g Cd plant(-1). Foliar P concentrations decreased with the addition of 45 and 90 g Cd plant(-1) and 600 g Zn plant(-1). Zn levels in leaves were not affected by the application of Cd or Ni. The highest concentrations. of Zn were found in branches (30-230 mg kg(-1)), leaves (7-35 mg kg(-1)) and beam (4-6.5 mg kg(-1)); Ni was found in leaves (4-45 mg kg(-1)), branches (3-18 mg kg(-1)) and beans (1-5 mg kg(-1)); and Cd was found in branches (0-6.2 mg kg(-1)) and beans (0-1.5 mg kg(-1)) but was absent in leaves. The mean yield of two harvests was not affected by Ni, but it decreased at the highest dose of Zn (600 g plant(-1)) and the two higher doses of Cd (45 and 90 g plant(-1)). Plants died when treated with the highest dose of Cd and showed symptoms of toxicity with the highest dose of Zn. Nevertheless, based on the amounts of metal used and the results obtained, we conclude that coffee plants are highly tolerant to the three metals tested. Moreover, even at high doses, there was very little transport to the beans, which is the part consumed by humans. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Zinc-alpha 2-glycoprotein (ZAG) is a lipid mobilizing factor. Its anti-inflammatory action and expression pattern suggest that ZAG could act by protecting against the obesity-associated disorders. In hemodialysis (HD) patients, ZAG levels were described to be elevated but its effects on markers of inflammation and LDL oxidation are still unclear. We investigated the relationship between ZAG and markers of systemic inflammation and LDL atherogenic modification profile in HD patients. Methods: Forty-three patients regularly on HD were studied and compared to 20 healthy subjects. Plasma ZAG, adiponectin, electronegative LDL [LDL(-)], an atherosclerotic negatively charged LDL subtraction, and anti-LDL(-) autoantibodies levels were measured by ELISA. Markers of inflammation and atherogenic cell recruitment (TNF-alpha, interleukin-6, VCAM-1, ICAM-1, MCP-1 and PAI-1) were also determined. Results: Inflammatory markers and atherogenic cell recruitment were higher in HD patients when compared to healthy subjects. ZAG levels were also higher in HD patients (151.5 +/- 50.1 mg/l vs 54.6 +/- 23.0 mg/l; p<0.0001) and its levels were negatively correlated with TNF-alpha (r= -0.39; p = 0.001) and VCAM-1 (r= -0.52; p<0.0001) and, positively correlated with anti-LDL(-) autoantibodies (r = 038; p = 0.016). On multivariate analyses, plasma ZAG levels were independently associated with VCAM-1 (p = 0.01). Conclusion: ZAG is inversely associated with markers of pro-atherogenic factors linked to systemic inflammation and oxidative stress. Thus, this adipokine may constitute a novel marker of a favorable metabolic profile regarding cardiovascular risk factors in HD population. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arthrospira platensis was cultivated in tubular photobioreactor in order to evaluate growth and biomass production at variable photosynthetic photon flux density (PPFD?=?60, 120, and 240?mu mol photons m-2?s-1) and employing three different systems for cell circulation, specifically an airlift, a motor-driven pumping and a pressurized system. The influence of these two independents variables on the maximum cell concentration (Xm), cell productivity (Px), nitrogen-to-cell conversion factor (YX/N), photosynthetic efficiency (PE), and biomass composition (total lipids and proteins), taken as responses, was evaluated by analysis of variance. The statistical analysis revealed that the best combination of responses' mean values (Xm?=?4,055?mg?L-1, Px?=?406?mg?L-1?day-1, YX/N?=?5.07?mg?mg-1, total lipids?=?8.94%, total proteins?=?30.3%, PE?=?2.04%) was obtained at PPFD?=?120?mu mol photons m-2?s-1; therefore, this light intensity should be considered as the most well-suited for A. platensis cultivation in this photobioreactor configuration. The airlift system did not exert any significant positive statistical influence on the responses, which suggests that this traditional cell circulation system could successfully be substituted by the others tested in this work. Biotechnol. Bioeng. 2012; 109:444450. (c) 2011 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The classic conservative approach for thermal process design can lead to over-processing, especially for laminar flow, when a significant distribution of temperature and of residence time occurs. In order to optimize quality retention, a more comprehensive model is required. A model comprising differential equations for mass and heat transfer is proposed for the simulation of the continuous thermal processing of a non-Newtonian food in a tubular system. The model takes into account the contribution from heating and cooling sections, the heat exchange with the ambient air and effective diffusion associated with non-ideal laminar flow. The study case of soursop juice processing was used to test the model. Various simulations were performed to evaluate the effect of the model assumptions. An expressive difference in the predicted lethality was observed between the classic approach and the proposed model. The main advantage of the model is its flexibility to represent different aspects with a small computational time, making it suitable for process evaluation and design. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CHEMICAL CHANGES AND ZINC PHYTOAVAILABILITY IN SEWAGE SLUDGE-AMENDED SOIL ESTIMATED BY THE ISOTOPIC METHOD. Zn availability in Red Latossol (Rhodic Ferralsol) of different pH amended with different rates of sewage sludge was studied by the isotopic Zn-65 L value method. Soil chemical properties were found to be altered by SS addition. Zn concentration and Zn derived from SS (ZnpfSS) in plant, and Zn phytoavailability (L value), were increased with increasing SS rates. The linear correlation coefficient of plant Zn with SS rates and with L value was significant at 1% probability. The L value proved an efficient method for predicting Zn phytoavailability in sewage sludge-amended soil with different pH under the soil conditions studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Similar to other photosynthetic microorganisms, the cyanobacterium Arthrospira platensis can be used to produce pigments, single cell proteins, fatty acids (which can be used for bioenergy), food and feed supplements, and biofixation of CO2. Cultivation in a specifically designed tubular photobioreactor is suitable for photosynthetic biomass production, because the cultivation area can be reduced by distributing the microbial cells vertically, thus avoiding loss of ammonia and CO2. The aim of this study was to investigate the influence of light intensity and dilution rate on the photosynthetic efficiency and CO2 assimilation efficiency of A. platensis cultured in a tubular photobioreactor in a continuous process. Urea was used as a nitrogen source and CO2 as carbon source and for pH control. Steady-state conditions were achieved in most of the runs, indicating that continuous cultivation of this cyanobacterium in a tubular photobioreactor could be an interesting alternative for the large-scale fixation of CO2 to mitigate the greenhouse effect while producing high protein content biomass.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oocyte maturation in the thelytokous parthenogenetic tick Amblyomma rotundatum was examined for the first time using light and scanning electron microscopy. The panoistic ovary lacks nurse and follicular cells and is a single continuous tubular structure forming a lumen delimited by the ovarian wall. Oocytes of tick species are usually classified according to cytoplasm appearance, the presence of germinal vesicle, the presence of yolk granules, and the chorion. However, for this species, we also use oocyte size as an auxiliary tool since most oocytes were in stages I-Ill and were histologically very similar. Oocytes were classified into five development stages, and specific characteristics were observed: mature oocytes with thin chorion, pedicel cells arranged forming an epithelium with two Or more oocytes attached by the same structure, and a large number of oocytes in the process of reabsorption. (C) 2011 Elsevier GmbH. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Further advances in magnetic hyperthermia might be limited by biological constraints, such as using sufficiently low frequencies and low field amplitudes to inhibit harmful eddy currents inside the patient's body. These incite the need to optimize the heating efficiency of the nanoparticles, referred to as the specific absorption rate (SAR). Among the several properties currently under research, one of particular importance is the transition from the linear to the non-linear regime that takes place as the field amplitude is increased, an aspect where the magnetic anisotropy is expected to play a fundamental role. In this paper we investigate the heating properties of cobalt ferrite and maghemite nanoparticles under the influence of a 500 kHz sinusoidal magnetic field with varying amplitude, up to 134 Oe. The particles were characterized by TEM, XRD, FMR and VSM, from which most relevant morphological, structural and magnetic properties were inferred. Both materials have similar size distributions and saturation magnetization, but strikingly different magnetic anisotropies. From magnetic hyperthermia experiments we found that, while at low fields maghemite is the best nanomaterial for hyperthermia applications, above a critical field, close to the transition from the linear to the non-linear regime, cobalt ferrite becomes more efficient. The results were also analyzed with respect to the energy conversion efficiency and compared with dynamic hysteresis simulations. Additional analysis with nickel, zinc and copper-ferrite nanoparticles of similar sizes confirmed the importance of the magnetic anisotropy and the damping factor. Further, the analysis of the characterization parameters suggested core-shell nanostructures, probably due to a surface passivation process during the nanoparticle synthesis. Finally, we discussed the effect of particle-particle interactions and its consequences, in particular regarding discrepancies between estimated parameters and expected theoretical predictions. Copyright 2012 Author(s). This article is distributed under a Creative Commons Attribution 3.0 Unported License. [http://dx.doi. org/10.1063/1.4739533]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the radial expansion of cylindrical tubes in a hot QGP. These tubes are treated as perturbations in the energy density of the system which is formed in heavy ion collisions at RHIC and LHC. We start from the equations of relativistic hydrodynamics in two spatial dimensions and cylindrical symmetry and perform an expansion of these equations in a small parameter, conserving the nonlinearity of the hydrodynamical formalism. We consider both ideal and viscous fluids and the latter are studied with a relativistic Navier-Stokes equation. We use the equation of state of the MIT bag model. In the case of ideal fluids we obtain a breaking wave equation for the energy density fluctuation, which is then solved numerically. We also show that, under certain assumptions, perturbations in a relativistic viscous fluid are governed by the Burgers equation. We estimate the typical expansion time of the tubes. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CONTEXT: Nutritional complications may occur after bariatric surgery, due to restriction of food intake and impaired digestion or absorption of nutrients. CASE REPORT: After undergoing vertical gastroplasty and jejunoileal bypass, a female patient presented marked weight loss and protein deficiency. Seven months after the bariatric surgery, she presented dermatological features compatible with acrodermatitis enteropathica, as seen from the plasma zinc levels, which were below the reference values (34.4 mg%). The skin lesions improved significantly after 1,000 mg/day of zinc sulfate supplementation for one week. CONCLUSIONS: The patient's evolution shows that the multidisciplinary team involved in surgical treatment of obesity should take nutritional deficiencies into consideration in the differential diagnosis of skin diseases, in order to institute early treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, a LED (light emitting diode) based photometer for solid phase photometry is described. The photometer was designed to permit direct coupling of a light source (LED) and a photodiode to a flow cell with an optical pathlength of 4 mm. The flow cell was filled with adsorbing solid phase material (C-18), which was used to immobilize the chromogenic reagent 1-(2-thiazolylazo)-2-naphthol (TAN). Aiming to allow accuracy assessment, samples were also analyzed employing ICP OES (inductively coupled plasma optical emission spectrometry) methodology. Applying the paired t-test at the 95% confidence level, no significant difference was observed. Other useful features were also achieved: linear response ranging from 0.05 to 0.85 mg L-1 Zn, limit of detection of 9 mu g L-1 Zn (3 sigma criterion), standard deviation of 1.4% (n = 10), sampling throughput of 36 determinations per h, and a waste generation and reagent consumption of 1.7 mL and of 0.03 mu g per determination, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aims of this study were two fold; to develop magnetoliposomes (MLs) loaded with zinc phthalocyanine (ZnPc) complexed with cucurbituril (CB) (CB:ZnPc-MLs) and to evaluate their in vitro photodynamic (PD) and/or hyperthermia (HT) effects while using melanoma cells (B16-F10) as model. The liposomal formulations were characterized by both average diameter and zeta potential. The vesicle average size ranged from 150 to 200 nm and the polydispersity index (PdI) from 0.093 to 0.230. The zeta potential was significantly positive with values between 48 and 57 mV. The cell viability (CV) after PD and HT treatments was assessed by colorimetric MTI method. Melanoma cells were initially treated with the liposome formulation without light and magnetic field application, revealing cell viability not different from the control cells (p > 0.05). Photodynamic and hyperthermia assays were also applied separately, demonstrating that PD is more effective than HT in reducing the CV of the neoplastic cells. Combined application of both PD and HT treatments was even more effective in reducing the CV of B16-F10 cells. At the highest light dose (2 J/cm(2)) and under magnetic field activation the CV was about half than PD applied alone. Therefore, the use of the photosensitizer-loaded magnetoliposome for combined photodynamic therapy (PDT) and magnetohyperthermia (MHT) application can be considered as a potential tool to treat malignant melanoma. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The biofilms formed by opportunistic yeasts serve as a persistent reservoir of infection and impair the treatment of fungal diseases. The aim of this study was to evaluate photodynamic inactivation (PDI) of biofilms formed by Candida spp. and the emerging pathogens Trichosporon mucoides and Kodamaea ohmeri by a cationic nanoemulsion of zinc 2,9,16,23-tetrakis(phenylthio)-29H,31H-phthalocyanine (ZnPc). Biofilms formed by yeasts after 48 h in the bottom of 96-well microtiter plates were treated with the photosensitizer (ZnPc) and a GaAlAs laser (26.3 J cm(-2)). The biofilm cells were scraped off the well wall, homogenized, and seeded onto Sabouraud dextrose agar plates that were then incubated at 37A degrees C for 48 h. Efficient PDI of biofilms was verified by counting colony-forming units (CFU/ml), and the data were submitted to analysis of variance and the Tukey test (p < 0.05). All biofilms studied were susceptible to PDI with statistically significant differences. The strains of Candida genus were more resistant to PDI than emerging pathogens T. mucoides and K. ohmeri. A mean reduction of 0.45 log was achieved for Candida spp. biofilms, and a reduction of 0.85 and 0.84, were achieved for biofilms formed by T. mucoides and K. ohmeri, respectively. Therefore, PDI by treatment with nanostructured formulations cationic zinc 2,9,16,23- tetrakis (phenylthio)- 29H, 31H- phthalocyanine (ZnPc) and a laser reduced the number of cells in the biofilms formed by strains of C. albicans and non-Candida albicans as well the emerging pathogens T. mucoides and K. ohmeri.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single-phase polycrystalline mixed nickel-zinc ferrites belonging to Ni0.5Zn0.5Fe2O4 were prepared on a nanometric scale (mean crystallite size equal to 14.7 nm) by chemical synthesis named the modified poliol method. Ferrite nanopowder was then incorporated into a natural rubber matrix producing nanocomposites. The samples were investigated by means of infrared spectroscopy, X-ray diffraction, scanning electron microscopy and magnetic measurements. The obtained results suggest that the base concentration of nickel-zinc ferrite nanoparticles inside the polymer matrix volume greatly influences the magnetic properties of nanoconnposites. A small quantity of nanoparticles, less than 10 phr, in the nanocomposite is sufficient to produce a small alteration in the semi-crystallinity of nanocomposites observed by X-ray diffraction analysis and it produces a flexible magnetic composite material with a saturation magnetization, a coercivity field and an initial magnetic permeability equal to 3.08 emu/g, 99.22 Oe and 9.42 X 10(-5) respectively.