877 resultados para Yeast tolerance to biomass hydrolysates


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Immature CD4+CD8+ thymocytes expressing T-cell antigen receptors (TCR) are selected by TCR-mediated recognition of peptides associated with major histocompatibility complex molecules on thymic stromal cells. Selection ensures reactivity of the mature cells to foreign antigens and tolerance to self. Although much has been learned about the factors that determine whether a thymocyte with a given specificity will be positively or negatively selected, selection as an aspect of the developmental process as a whole is less well-understood. Here we invoke a model in which thymocytes tune their response characteristics individually and dynamically in the course of development. Cellular development and selection are driven by receptor-mediated metabolic perturbations. Perturbation is a measure of the net intracellular change induced by external stimulation. It results from the integration of several signals and countersignals over time and therefore depends on the environment and the maturation stage of the cell. Individual cell adaptation limits the range of perturbations. Such adaptation renders thymocytes less sensitive to the level of stimulation per se, but responsive to environmental changes in that level. This formulation begins to explain the mechanisms that link developmental and selection events to each other.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The major murine systemic lupus erythematosus (SLE) susceptibility locus Sle1 is syntenic to a chromosomal region linked with SLE susceptibility in multiple human studies. Congenic analyses have shown that Sle1 breaks tolerance to chromatin, a necessary step for full disease induction that can be suppressed by specific modifier loci. In the present study, our fine mapping analysis of the location of Sle1 has determined that three loci within this congenic interval, termed Sle1a, Sle1b, and Sle1c, can independently cause a loss of tolerance to chromatin. Each displays a distinctive profile of serological and cellular characteristics, with T and B cell functions being more affected by Sle1a and Sle1b, respectively. The epistatic interactions of Sle1 with other susceptibility loci to cause severe nephritis cannot be accounted, however, by these three loci alone, suggesting the existence of an additional locus, termed Sle1d. These findings indicate that the potent autoimmune phenotype caused by the Sle1 genomic interval reflects the combined impact of four, separate, susceptibility genes. This level of genetic complexity, combined with similar findings in other systems, supports the possibility that many complex trait loci reflect the impact of polymorphisms in linked clusters of genes with related functions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exposure of yeast cells to an increase in external osmolarity induces a temporary growth arrest. Recovery from this stress is mediated by the accumulation of intracellular glycerol and the transcription of several stress response genes. Increased external osmolarity causes a transient accumulation of 1N and 2N cells and a concomitant depletion of S phase cells. Hypertonic stress triggers a cell cycle delay in G2 phase cells that appears distinct from the morphogenesis checkpoint, which operates in early S phase cells. Hypertonic stress causes a decrease in CLB2 mRNA, phosphorylation of Cdc28p, and inhibition of Clb2p-Cdc28p kinase activity, whereas Clb2 protein levels are unaffected. Like the morphogenesis checkpoint, the osmotic stress-induced G2 delay is dependent upon the kinase Swe1p, but is not tightly correlated with inhibition of Clb2p-Cdc28p kinase activity. Thus, deletion of SWE1 does not prevent the hypertonic stress-induced inhibition of Clb2p-Cdc28p kinase activity. Mutation of the Swe1p phosphorylation site on Cdc28p (Y19) does not fully eliminate the Swe1p-dependent cell cycle delay, suggesting that Swe1p may have functions independent of Cdc28p phosphorylation. Conversely, deletion of the mitogen-activated protein kinase HOG1 does prevent Clb2p-Cdc28p inhibition by hypertonic stress, but does not block Cdc28p phosphorylation or alleviate the cell cycle delay. However, Hog1p does contribute to proper nuclear segregation after hypertonic stress in cells that lack Swe1p. These results suggest a hypertonic stress-induced cell cycle delay in G2 phase that is mediated in a novel way by Swe1p in cooperation with Hog1p.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Saccharomyces cerevisiae CDC9 gene encodes a DNA ligase protein that is targeted to both the nucleus and the mitochondria. While nuclear Cdc9p is known to play an essential role in nuclear DNA replication and repair, its role in mitochondrial DNA dynamics has not been defined. It is also unclear whether additional DNA ligase proteins are present in yeast mitochondria. To address these issues, mitochondrial DNA ligase function in S.cerevisiae was analyzed. Biochemical analysis of mitochondrial protein extracts supported the conclusion that Cdc9p was the sole DNA ligase protein present in this organelle. Inactivation of mitochondrial Cdc9p function led to a rapid decline in cellular mitochondrial DNA content in both dividing and stationary yeast cultures. In contrast, there was no apparent defect in mitochondrial DNA dynamics in a yeast strain deficient in Dnl4p (Δdnl4). The Escherichia coli EcoRI endonuclease was targeted to yeast mitochondria. Transient expression of this recombinant EcoRI endonuclease led to the formation of mitochondrial DNA double-strand breaks. While wild-type and Δdnl4 yeast were able to rapidly recover from this mitochondrial DNA damage, clones deficient in mitochondrial Cdc9p were not. These results support the conclusion that yeast rely upon a single DNA ligase, Cdc9p, to carry out mitochondrial DNA replication and recovery from both spontaneous and induced mitochondrial DNA damage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Arabidopsis GA3 cDNA was expressed in yeast (Saccharomyces cerevisiae) and the ability of the transformed yeast cells to metabolize ent-kaurene was tested. We show by full-scan gas chromatography-mass spectrometry that the transformed cells produce ent-kaurenoic acid, and demonstrate that the single enzyme GA3 (ent-kaurene oxidase) catalyzes the three steps of gibberellin biosynthesis from ent-kaurene to ent-kaurenoic acid.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An important pathway by which plants detoxify heavy metals is through sequestration with heavy-metal-binding peptides called phytochelatins or their precursor, glutathione. To identify limiting factors for heavy-metal accumulation and tolerance, and to develop transgenic plants with an increased capacity to accumulate and/or tolerate heavy metals, the Escherichia coli gshII gene encoding glutathione synthetase (GS) was overexpressed in the cytosol of Indian mustard (Brassica juncea). The transgenic GS plants accumulated significantly more Cd than the wild type: shoot Cd concentrations were up to 25% higher and total Cd accumulation per shoot was up to 3-fold higher. Moreover, the GS plants showed enhanced tolerance to Cd at both the seedling and mature-plant stages. Cd accumulation and tolerance were correlated with the gshII expression level. Cd-treated GS plants had higher concentrations of glutathione, phytochelatin, thiol, S, and Ca than wild-type plants. We conclude that in the presence of Cd, the GS enzyme is rate limiting for the biosynthesis of glutathione and phytochelatins, and that overexpression of GS offers a promising strategy for the production of plants with superior heavy-metal phytoremediation capacity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several mutant strains of Synechocystis sp. PCC 6803 with large deletions in the D-E loop of the photosystem II (PSII) reaction center polypeptide D1 were subjected to high light to investigate the role of this hydrophilic loop in the photoinhibition cascade of PSII. The tolerance of PSII to photoinhibition in the autotrophic mutant ΔR225-F239 (PD), when oxygen evolution was monitored with 2,6-dichloro-p-benzoquinone and the equal susceptibility compared with control when monitored with bicarbonate, suggested an inactivation of the QB-binding niche as the first event in the photoinhibition cascade in vivo. This step in PD was largely reversible at low light without the need for protein synthesis. Only the next event, inactivation of QA reduction, was irreversible and gave a signal for D1 polypeptide degradation. The heterotrophic deletion mutants ΔG240-V249 and ΔR225-V249 had severely modified QB pockets, yet exhibited high rates of 2,6-dichloro-p-benzoquinone-mediated oxygen evolution and less tolerance to photoinhibition than PD. Moreover, the protein-synthesis-dependent recovery of PSII from photoinhibition was impaired in the ΔG240-V249 and ΔR225-V249 mutants because of the effects of the mutations on the expression of the psbA-2 gene. No specific sequences in the D-E loop were found to be essential for high rates of D1 polypeptide degradation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spraying mustard (Sinapis alba L.) seedlings with salicylic acid (SA) solutions between 10 and 500 μm significantly improved their tolerance to a subsequent heat shock at 55°C for 1.5 h. The effects of SA were concentration dependent, with higher concentrations failing to induce thermotolerance. The time course of thermotolerance induced by 100 μm SA was similar to that obtained with seedlings acclimated at 45°C for 1 h. We examined the hypothesis that induced thermotolerance involved H2O2. Heat shock at 55°C caused a significant increase in endogenous H2O2 and reduced catalase activity. A peak in H2O2 content was observed within 5 min of either SA treatment or transfer to the 45°C acclimation temperature. Between 2 and 3 h after SA treatment or heat acclimation, both H2O2 and catalase activity significantly decreased below control levels. The lowered H2O2 content and catalase activity occurred in the period of maximum thermoprotection. It is suggested that thermoprotection obtained either by spraying SA or by heat acclimation may be achieved by a common signal transduction pathway involving an early increase in H2O2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most tumor-associated antigens represent self-proteins and as a result are poorly immunogenic due to immune tolerance. Here we show that tolerance to carcinoembryonic antigen (CEA), which is overexpressed by the majority of lethal malignancies, can be reversed by immunization with a CEA-derived peptide. This peptide was altered to make it a more potent T cell antigen and loaded onto dendritic cells (DCs) for delivery as a cellular vaccine. Although DCs are rare in the blood, we found that treatment of advanced cancer patients with Flt3 ligand, a hematopoietic growth factor, expanded DCs 20-fold in vivo. Immunization with these antigen-loaded DCs induced CD8 cytotoxic T lymphocytes that recognized tumor cells expressing endogenous CEA. Staining with peptide-MHC tetramers demonstrated the expansion of CD8 T cells that recognize both the native and altered epitopes and possess an effector cytotoxic T lymphocyte phenotype (CD45RA+CD27−CCR7−). After vaccination, two of 12 patients experienced dramatic tumor regression, one patient had a mixed response, and two had stable disease. Clinical response correlated with the expansion of CD8 tetramer+ T cells, confirming the role of CD8 T cells in this treatment strategy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The p53 mutant, 143ala, was translated in vitro in either rabbit reticulocyte lysate (RRL) or wheat germ extract (WGE). In RRL, p53-143ala protein of both mutant and wild-type conformation, as detected immunologically with conformation-specific antibodies, was translated. The chaperone protein HSP90, present in RRL, was found to coprecipitate only with the mutated conformation of p53. Geldanamycin, shown previously to bind to HSP90 and destabilize its association with other proteins, decreased the amount of immunologically detectable mutated p53 and increased the amount of detectable wild-type protein, without affecting the total translation of p53. When translated in WGE, known to contain functionally deficient HSP90, p53-143ala produced p53 protein, which was not recognized by a mutated conformation-specific antibody. In contrast, the synthesis of conformationally detectable wild-type p53 in this system was not compromised. Reconstitution of HSP90 function in WGE permitted synthesis of conformationally detectable mutated p53, and this was abrogated by geldanamycin. Finally, when p53-143ala was stably tansfected into yeast engineered to be defective for HSP90 function, conformational recognition of mutated p53 was impaired. When stable transfectants of p53-143ala were prepared in yeast expressing wild-type HSP90, conformational recognition of mutated p53 was antagonized by macbecin I, a geldanamycin analog also known to bind HSP90. Taken together, these data demonstrate a role for HSP90 in the achievement and/or stabilization of the mutated conformation of p53-143ala. Furthermore, we show that the mutated conformation of p53 can be pharmacologically antagonized by drugs targeting HSP90.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In yeast, commitment to cell division (Start) is catalyzed by activation of the Cdc28 protein kinase in late G1 phase by the Cln1, Cln2, and Cln3 G1 cyclins. The Clns are essential, rate-limiting activators of Start because cells lacking Cln function (referred to as cln-) arrest at Start and because CLN dosage modulates the timing of Start. At or shortly after Start, the development of B-type cyclin Clb-Cdc28 kinase activity and initiation of DNA replication requires the destruction of p40SIC1, a specific inhibitor of the Clb-Cdc28 kinases. I report here that cln cells are rendered viable by deletion of SIC1. Conversely, in cln1 cln2 cells, which have low CLN activity, modest increases in SIC1 gene dosage cause inviability. Deletion of SIC1 does not cause a general bypass of Start since (cln-)sic1 cells remain sensitive to mating pheromone-induced arrest. Far1, a pheromone-activated inhibitor of Cln-Cdc28 kinases, is dispensable for arrest of (cln-)sic1 cells by pheromone, implying the existence of an alternate Far1-independent arrest pathway. These observations define a pheromone-sensitive activity able to catalyze Start only in the absence of p40SIC1. The existence of this activity means that the B-type cyclin inhibitor p40SIC1 imposes the requirement for Cln function at Start.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The alpha-factor pheromone receptor stimulates MATa yeast cells to undergo conjugation. The receptor contains seven transmembrane domains that function in ligand binding and in transducing a signal to the cytoplasmic receptor sequences to mediate G protein activation. A genetic screen was used to isolate receptor mutations that constitutively signal in the absence of alpha-factor. The Pro-258-->Leu (P258L) mutation caused constitutive receptor signaling that was equivalent to about 45% of the maximum level observed in wild-type cells stimulated with alpha-factor. Mutations of both Pro-258 and the adjacent Ser-259 to Leu increased constitutive signaling to > or = 90% of the maximum level. Since Pro-258 occurs in the central portion of transmembrane domain 6, and since proline residues are expected to cause a kink in alpha-helical domains, the P258L mutation is predicted to alter the structure of transmembrane domain 6. The P258L mutation did not result in a global distortion of receptor structure because alpha-factor bound to the mutant receptors with high affinity and induced even higher levels of signaling. These results suggest that sequences surrounding Pro-258 may be involved in ligand activation of the receptor. Conformational changes in transmembrane domain 6 may effect a change in the adjacent sequences in the third intracellular loop that are thought to function in G protein activation. Greater than 90% of all G protein-coupled receptors contain a proline residue at a similar position in transmembrane domain 6, suggesting that this aspect of receptor activation may be conserved in other receptors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We quantitate the absolute levels of individual mRNAs per yeast cell by hybridizing total yeast RNA with an excess of gene-specific 32P-oligonucleotides, and digesting the resulting RNA-DNA hybrids with S1 nuclease. By comparing the his3 hybridization signal from a known amount of yeast cells to the signal generated by a known amount of his3 RNA synthesized in vitro, we determine that yeast strain KY114 growing in yeast extract/peptone/glucose medium at 30 degrees C contains seven molecules of his3 mRNA per cell. Using a galactose shut-off procedure, we determined that the half-life of his3 mRNA is approximately 11 min under these conditions. From these observations, we calculate that one his3 mRNA molecule is synthesized every 140 s. Analysis of other his3 promoter derivatives suggests that the maximal transcriptional initiation rate in yeast cells is one mRNA molecule every 6-8 s. Using his3 as an internal standard, the number of mRNA molecules per cell have been determined for ded1, trp3, rps4, and gall under a variety of growth conditions. From these results, the absolute mRNA level of any yeast gene can be determined in a single hybridization experiment. Moreover, the rate of transcriptional initiation can be determined for mRNAs whose decay rates are known.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To explain the pathogenesis of autoimmunity, we hypothesize that following an infection the immune response spreads to tissue-specific autoantigens in genetically predisposed individuals eventually determining progression to disease. Molecular mimicry between viral and self antigens could, in some instances, initiate autoimmunity. Local elicitation of inflammatory cytokines following infection probably plays a pivotal role in determining loss of functional tolerance to self autoantigens and the destructive activation of autoreactive cells. We also describe the potential role of interleukin 10, a powerful B-cell activator, in increasing the efficiency of epitope recognition, that could well be crucial to the progression toward disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A pathogenic role for self-reactive cells against the stress protein Hsp60 has been proposed as one of the events leading to autoimmune destruction of pancreatic beta cells in the diabetes of nonobese diabetic (NOD) mice. To examine this hypothesis, we generated transgenic NOD mice carrying a murine Hsp60 transgene driven by the H-2E alpha class II promoter. This would be expected to direct expression of the transgene to antigen-presenting cells including those in the thymus and so induce immunological tolerance by deletion. Detailed analysis of Hsp60 expression revealed that the endogenous gene is itself expressed strongly in thymic medullary epithelium (and weakly in cortex) yet fails to induce tolerance. Transgenic mice with retargeted Hsp60 showed overexpression of the gene in thymic cortical epithelium and in bone marrow-derived cells. Analysis of spontaneous T-cell responses to a panel of self and heterologous Hsp60 antigens showed that tolerance to the protein had not been induced, although responses to an immunodominant 437-460 epitope implicated in disease were suppressed, probably indicating an epitope shift. This correlated with changes in disease susceptibility: insulitis in transgenic mice was substantially reduced so that pathology rarely progressed beyond periislet infiltration. This was reflected in a substantial reduction in hyperglycemia and disease. These data indicate that T cells specific for some epitopes of murine Hsp60 are likely to be involved in the islet-cell destruction that occurs in NOD mice.