873 resultados para Wide area networks (Computer networks)


Relevância:

50.00% 50.00%

Publicador:

Resumo:

We consider the problem of self-healing in networks that are reconfigurable in the sense that they can change their topology during an attack. Our goal is to maintain connectivity in these networks, even in the presence of repeated adversarial node deletion, by carefully adding edges after each attack. We present a new algorithm, DASH, that provably ensures that: 1) the network stays connected even if an adversary deletes up to all nodes in the network; and 2) no node ever increases its degree by more than 2 log n, where n is the number of nodes initially in the network. DASH is fully distributed; adds new edges only among neighbors of deleted nodes; and has average latency and bandwidth costs that are at most logarithmic in n. DASH has these properties irrespective of the topology of the initial network, and is thus orthogonal and complementary to traditional topology- based approaches to defending against attack. We also prove lower-bounds showing that DASH is asymptotically optimal in terms of minimizing maximum degree increase over multiple attacks. Finally, we present empirical results on power-law graphs that show that DASH performs well in practice, and that it significantly outperforms naive algorithms in reducing maximum degree increase.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

We present a novel device-free stationary person detection and ranging method, that is applicable to ultra-wide bandwidth (UWB) networks. The method utilizes a fixed UWB infrastructure and does not require a training database of template waveforms. Instead, the method capitalizes on the fact that a human presence induces small low-frequency variations that stand out against the background signal, which is mainly affected by wideband noise. We analyze the detection probability, and validate our findings with numerical simulations and experiments with off-the-shelf UWB transceivers in an indoor environment. © 2007-2012 IEEE.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This paper describes middleware-level support for agent mobility, targeted at hierarchically structured wireless sensor and actuator network applications. Agent mobility enables a dynamic deployment and adaptation of the application on top of the wireless network at runtime, while allowing the middleware to optimize the placement of agents, e.g., to reduce wireless network traffic, transparently to the application programmer. The paper presents the design of the mechanisms and protocols employed to instantiate agents on nodes and to move agents between nodes. It also gives an evaluation of a middleware prototype running on Imote2 nodes that communicate over ZigBee. The results show that our implementation is reasonably efficient and fast enough to support the envisioned functionality on top of a commodity multi-hop wireless technology. Our work is to a large extent platform-neutral, thus it can inform the design of other systems that adopt a hierarchical structuring of mobile components. © 2012 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

We examined a remnant host plant (Primula veris L.) habitat network that was last inhabited by the rare butterfly Hamearis lucina L. in north Wales in 1943, to assess the relative contribution of several spatial parameters to its regional extinction. We first examined relationships between P. veris characteristics and H. lucina eggs in surviving H. lucina populations, and used these to predict the suitability and potential carrying capacity of the habitat network in north Wales. This resulted in an estimate of roughly 4500 eggs (ca 227 adults). We developed a discrete space, discrete time metapopulation model to evaluate the relative contribution of dispersal distance, habitat and environmental stochasticity as possible causes of extinction. We simulated the potential persistence of the butterfly in the current network as well as in three artificial (historical and present) habitat networks that differed in the quantity (current and X3) and fragmentation of the habitat (current and aggregated). We identified that reduced habitat quantity and increased isolation would have increased the probability of regional extinction, in conjunction with environmental stochasticity and H. lucina's dispersal distance. This general trend did not change in a qualitative manner when we modified the ability of dispersing females to stay in, and find suitable habitats (by changing the size of the grid cells used in the model). Contrary to most metapopulation model predictions, system persistence declined with increasing migration rate, suggesting that the mortality of migrating individuals in fragmented landscapes may pose significant risks to system-wide persistence. Based on model predictions for the present landscape we argue that a major programme of habitat restoration would be required for a re-established metapopulation to persist for > 100 years.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

BACKGROUND: Urothelial pathogenesis is a complex process driven by an underlying network of interconnected genes. The identification of novel genomic target regions and gene targets that drive urothelial carcinogenesis is crucial in order to improve our current limited understanding of urothelial cancer (UC) on the molecular level. The inference of genome-wide gene regulatory networks (GRN) from large-scale gene expression data provides a promising approach for a detailed investigation of the underlying network structure associated to urothelial carcinogenesis.

METHODS: In our study we inferred and compared three GRNs by the application of the BC3Net inference algorithm to large-scale transitional cell carcinoma gene expression data sets from Illumina RNAseq (179 samples), Illumina Bead arrays (165 samples) and Affymetrix Oligo microarrays (188 samples). We investigated the structural and functional properties of GRNs for the identification of molecular targets associated to urothelial cancer.

RESULTS: We found that the urothelial cancer (UC) GRNs show a significant enrichment of subnetworks that are associated with known cancer hallmarks including cell cycle, immune response, signaling, differentiation and translation. Interestingly, the most prominent subnetworks of co-located genes were found on chromosome regions 5q31.3 (RNAseq), 8q24.3 (Oligo) and 1q23.3 (Bead), which all represent known genomic regions frequently deregulated or aberated in urothelial cancer and other cancer types. Furthermore, the identified hub genes of the individual GRNs, e.g., HID1/DMC1 (tumor development), RNF17/TDRD4 (cancer antigen) and CYP4A11 (angiogenesis/ metastasis) are known cancer associated markers. The GRNs were highly dataset specific on the interaction level between individual genes, but showed large similarities on the biological function level represented by subnetworks. Remarkably, the RNAseq UC GRN showed twice the proportion of significant functional subnetworks. Based on our analysis of inferential and experimental networks the Bead UC GRN showed the lowest performance compared to the RNAseq and Oligo UC GRNs.

CONCLUSION: To our knowledge, this is the first study investigating genome-scale UC GRNs. RNAseq based gene expression data is the data platform of choice for a GRN inference. Our study offers new avenues for the identification of novel putative diagnostic targets for subsequent studies in bladder tumors.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The proposition of increased innovation in network applications and reduced cost for network operators has won over the networking world to the vision of Software-Defined Networking (SDN). With the excitement of holistic visibility across the network and the ability to program network devices, developers have rushed to present a range of new SDN-compliant hardware, software and services. However, amidst this frenzy of activity, one key element has only recently entered the debate: Network Security. In this article, security in SDN is surveyed presenting both the research community and industry advances in this area. The challenges to securing the network from the persistent attacker are discussed and the holistic approach to the security architecture that is required for SDN is described. Future research directions that will be key to providing network security in SDN are identified.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Titanium alloy exhibits an excellent combination of bio-compatibility, corrosion resistance, strength and toughness. The microstructure of an alloy influences the properties. The microstructures depend mainly on alloying elements, method of production, mechanical, and thermal treatments. The relationships between these variables and final properties of the alloy are complex, non-linear in nature, which is the biggest hurdle in developing proper correlations between them by conventional methods. So, we developed artificial neural networks (ANN) models for solving these complex phenomena in titanium alloys.

In the present work, ANN models were used for the analysis and prediction of the correlation between the process parameters, the alloying elements, microstructural features, beta transus temperature and mechanical properties in titanium alloys. Sensitivity analysis of trained neural network models were studied which resulted a better understanding of relationships between inputs and outputs. The model predictions and the analysis are well in agreement with the experimental results. The simulation results show that the average output-prediction error by models are less than 5% of the prediction range in more than 95% of the cases, which is quite acceptable for all metallurgical purposes.