793 resultados para Whole Body Vibration
Resumo:
‘Wearable technology’, or the use of specialist technology in garments, is promoted by the electronics industry as the next frontier of fashion. However the story of wearable technology’s relationship with fashion begins neither with the development of miniaturised computers in the 1970s nor with sophisticated ‘smart textiles’ of the twenty-first century, despite what much of the rhetoric suggests. This study examines wearable technology against a longer history of fashion, highlighted by the influential techno-sartorial experiments of a group of early twentieth century avant-gardes including Italian Futurists Giacomo Balla and F.T. Marinetti, Russian Constructivists Varvara Stepanova and Liubov Popova, and Paris-based Cubist, Sonia Delaunay. Through the interdisciplinary framework of fashion studies, the thesis provides a fuller picture of wearable technology framed by the idea of utopia. Using comparative analysis, and applying the theoretical formulations of Fredric Jameson, Louis Marin and Michael Carter, the thesis traces the appearance of three techno-utopian themes from their origins in the machine age experiments of Balla, Marinetti, Stepanova, Popova and Delaunay to their twenty-first century reappearance in a dozen wearable technology projects. By exploring the central thesis that contemporary wearable technology resurrects the techno-utopian ideas and expressions of the early twentieth century, the study concludes that the abiding utopian impetus to embed technology in the aesthetics (prints, silhouettes, and fabrication) and functionality of fashion is to unify subject, society and environment under a totalising technological order.
Resumo:
Human activity-induced vibrations in slender structural sys tems become apparent in many different excitation modes and consequent action effects that cause discomfort to occupants, crowd panic and damage to public infrastructure. Resulting loss of public confidence in safety of structures, economic losses, cost of retrofit and repairs can be significant. Advanced computational and visualisation techniques enable engineers and architects to evolve bold and innovative structural forms, very often without precedence. New composite and hybrid materials that are making their presence in structural systems lack historical evidence of satisfactory performance over anticipated design life. These structural systems are susceptible to multi-modal and coupled excitation that are very complex and have inadequate design guidance in the present codes and good practice guides. Many incidents of amplified resonant response have been reported in buildings, footbridges, stadia a nd other crowded structures with adverse consequences. As a result, attenuation of human-induced vibration of innovative and slender structural systems very ofte n requires special studies during the design process. Dynamic activities possess variable characteristics and thereby induce complex responses in structures that are sensitive to parametric variations. Rigorous analytical techniques are available for investigation of such complex actions and responses to produce acceptable performance in structural systems. This paper presents an overview and a critique of existing code provisions for human-induced vibration followed by studies on the performance of three contrasting structural systems that exhibit complex vibration. The dynamic responses of these systems under human-induced vibrations have been carried out using experimentally validated computer simulation techniques. The outcomes of these studies will have engineering applications for safe and sustainable structures and a basis for developing design guidance.
Resumo:
The mechanical vibration properties of single actin filaments from 50 to 288 nm are investigated by the molecular dynamics simulation in this study. The natural frequencies obtained from the molecular simulations agree with those obtained from the analytical solution of the equivalent Euler–Bernoulli beam model. Through the convergence study of the mechanical properties with respect to the filament length, it was found that the Euler–Bernoulli beam model can only be reliably used when the single actin filament is of the order of hundreds of nanometre scale. This molecular investigation not only provides the evidence for the use of the continuum beam model in characterising the mechanical properties of single actin filaments, but also clarifies the criteria for the effective use of the Euler–Bernoulli beam model.
Resumo:
Background Ethnic differences in body fat distribution contribute to ethnic differences in cardiovascular morbidities and diabetes. However few data are available on differences in fat distribution in Asian children from various backgrounds. Therefore, the current study aimed to explore ethnic differences in body fat distribution among Asian children from four countries. Methods A total of 758 children aged 8-10 y from China, Lebanon, Malaysia and Thailand were recruited using a non-random purposive sampling approach to enrol children encompassing a wide BMI range. Height, weight, waist circumference (WC), fat mass (FM, derived from total body water [TBW] estimation using the deuterium dilution technique) and skinfold thickness (SFT) at biceps, triceps, subscapular, supraspinale and medial calf were collected. Results After controlling for height and weight, Chinese and Thai children had a significantly higher WC than their Lebanese and Malay counterparts. Chinese and Thais tended to have higher trunk fat deposits than Lebanese and Malays reflected in trunk SFT, trunk/upper extremity ratio or supraspinale/upper extremity ratio after adjustment for age and total body fat. The subscapular/supraspinale skinfold ratio was lower in Chinese and Thais compared with Lebanese and Malays after correcting for trunk SFT. Conclusions Asian pre-pubertal children from different origins vary in body fat distribution. These results indicate the importance of population-specific WC cut-off points or other fat distribution indices to identify the population at risk of obesity-related health problems.
Resumo:
Background Zambia is a sub-Saharan country with one of the highest prevalence rates of HIV, currently estimated at 14%. Poor nutritional status due to both protein-energy and micronutrient malnutrition has worsened this situation. In an attempt to address this combined problem, the government has instigated a number of strategies, including the provision of antiretroviral (ARV) treatment coupled with the promotion of good nutrition. High-energy protein supplement (HEPS) is particularly promoted; however, the impact of this food supplement on the nutritional status of people living with HIV/AIDS (PLHA) beyond weight gain has not been assessed. Techniques for the assessment of nutritional status utilising objective measures of body composition are not commonly available in Zambia. The aim of this study is therefore to assess the impact of a food supplement on nutritional status using a comprehensive anthropometric protocol including measures of skinfold thickness and circumferences, plus the criterion deuterium dilution technique to assess total body water (TBW) and derive fat-free mass (FFM) and fat mass (FM). Methods/Design This community-based controlled and longitudinal study aims to recruit 200 HIV-infected females commencing ARV treatment at two clinics in Lusaka, Zambia. Data will be collected at four time points: baseline, 4-month, 8-month and 12-month follow-up visits. Outcome measures to be assessed include body height and weight, body mass index (BMI), body composition, CD4, viral load and micronutrient status. Discussion This protocol describes a study that will provide a longitudinal assessment of the impact of a food supplement on the nutritional status of HIV-infected females initiating ARVs using a range of anthropometric and body composition assessment techniques.
Resumo:
Although conditioning is routinely used in mechanical tests of tendon in vitro, previous in vivo research evaluating the influence of body anthropometry on Achilles tendon thickness has not considered its potential effects on tendon structure. This study evaluated the relationship between Achilles tendon thickness and body anthropometry in healthy adults both before and after resistive ankle plantarflexion exercise. A convenience sample of 30 healthy male adults underwent sonographic examination of the Achilles tendon in addition to standard anthropometric measures of stature and body weight. A 10-5 MHz linear array transducer was used to acquire longitudinal sonograms of the Achilles tendon, 20 mm proximal to the tendon insertion. Participants then completed a series (90-100 repetitions) of conditioning exercises against an effective resistance between 100% and 150% body weight. Longitudinal sonograms were repeated immediately on completion of the exercise intervention, and anteroposterior Achilles tendon thickness was determined. Achilles tendon thickness was significantly reduced immediately following conditioning exercise (t = 9.71, P < 0.001), resulting in an average transverse strain of -18.8%. In contrast to preexercise measures, Achilles tendon thickness was significantly correlated with body weight (r = 0.72, P < 0.001) and to a lesser extent height (r = 0.45, P < 0.01) and body mass index (r = 0.63, P < 0.001) after exercise. Conditioning of the Achilles tendon via resistive ankle exercises induces alterations in tendon structure that substantially improve correlations between Achilles tendon thickness and body anthropometry. It is recommended that conditioning exercises, which standardize the load history of tendon, are employed before measurements of sonographic tendon thickness in vivo.
The increased popularity of mopeds and motor scooters : exploring usage patterns and safety outcomes
Resumo:
Increased use of powered two-wheelers (PTWs) often underlies increases in the number of reported crashes, promoting research into PTW safety. PTW riders are overrepresented in crash and injury statistics relative to exposure and, as such, are considered vulnerable road users. PTW use has increased substantially over the last decade in many developed countries. One such country is Australia, where moped and scooter use has increased at a faster rate than motorcycle use in recent years. Increased moped use is particularly evident in the State of Queensland which is one of four Australian jurisdictions where moped riding is permitted for car licence holders and a motorcycle licence is not required. A moped is commonly a small motor scooter and is limited to a maximum design speed of 50 km/h and a maximum engine cylinder capacity of 50 cubic centimetres. Scooters exceeding either of these specifications are classed as motorcycles in all Australian jurisdictions. While an extensive body of knowledge exists on motorcycle safety, some of which is relevant to moped and scooter safety, the latter PTW types have received comparatively little focused research attention. Much of the research on moped safety to date has been conducted in Europe where they have been popular since the mid 20th century, while some studies have also been conducted in the United States. This research is of limited relevance to Australia due to socio-cultural, economic, regulatory and environmental differences. Moreover, while some studies have compared motorcycles to mopeds in terms of safety, no research to date has specifically examined the differences and similarities between mopeds and larger scooters, or between larger scooters and motorcycles. To address the need for a better understanding of moped and scooter use and safety, the current program of research involved three complementary studies designed to achieve the following aims: (1) develop better knowledge and understanding of moped and scooter usage trends and patterns; and (2) determine the factors leading to differences in moped, scooter and motorcycle safety. Study 1 involved six-monthly observations of PTW types in inner city parking areas of Queensland’s capital city, Brisbane, to monitor and quantify the types of PTW in use over a two year period. Study 2 involved an analysis of Queensland PTW crash and registration data, primarily comparing the police-reported crash involvement of mopeds, scooters and motorcycles over a five year period (N = 7,347). Study 3 employed both qualitative and quantitative methods to examine moped and scooter usage in two components: (a) four focus group discussions with Brisbane-based Queensland moped and scooter riders (N = 23); and (b) a state-wide survey of Queensland moped and scooter riders (N = 192). Study 1 found that of the PTW types parked in inner city Brisbane over the study period (N = 2,642), more than one third (36.1%) were mopeds or larger scooters. The number of PTWs observed increased at each six-monthly phase, but there were no significant changes in the proportions of PTW types observed across study phases. There were no significant differences in the proportions or numbers of PTW type observed by season. Study 2 revealed some important differences between mopeds, scooters and motorcycles in terms of safety and usage through analysis of crash and registration data. All Queensland PTW registrations doubled between 2001 and 2009, but there was an almost fifteen-fold increase in moped registrations. Mopeds subsequently increased as a proportion of Queensland registered PTWs from 1.2 percent to 8.8 percent over this nine year period. Moped and scooter crashes increased at a faster rate than motorcycle crashes over the five year study period from July 2003 to June 2008, reflecting their relatively greater increased usage. Crash rates per 10,000 registrations for the study period were only slightly higher for mopeds (133.4) than for motorcycles and scooters combined (124.8), but estimated crash rates per million vehicle kilometres travelled were higher for mopeds (6.3) than motorcycles and scooters (1.7). While the number of crashes increased for each PTW type over the study period, the rate of crashes per 10,000 registrations declined by 40 percent for mopeds compared with 22 percent for motorcycles and scooters combined. Moped and scooter crashes were generally less severe than motorcycle crashes and this was related to the particular crash characteristics of the PTW types rather than to the PTW types themselves. Compared to motorcycle and moped crashes, scooter crashes were less likely to be single vehicle crashes, to involve a speeding or impaired rider, to involve poor road conditions, or to be attributed to rider error. Scooter and moped crashes were more likely than motorcycle crashes to occur on weekdays, in lower speed zones and at intersections. Scooter riders were older on average (39) than moped (32) and motorcycle (35) riders, while moped riders were more likely to be female (36%) than scooter (22%) or motorcycle riders (7%). The licence characteristics of scooter and motorcycle riders were similar, with moped riders more likely to be licensed outside of Queensland and less likely to hold a full or open licence. The PTW type could not be identified in 15 percent of all cases, indicating a need for more complete recording of vehicle details in the registration data. The focus groups in Study 3a and the survey in Study 3b suggested that moped and scooter riders are a heterogeneous population in terms of demographic characteristics, riding experience, and knowledge and attitudes regarding safety and risk. The self-reported crash involvement of Study 3b respondents suggests that most moped and scooter crashes result in no injury or minor injury and are not reported to police. Study 3 provided some explanation for differences observed in Study 2 between mopeds and scooters in terms of crash involvement. On the whole, scooter riders were older, more experienced, more likely to have undertaken rider training and to value rider training programs. Scooter riders were also more likely to use protective clothing and to seek out safety-related information. This research has some important practical implications regarding moped and scooter use and safety. While mopeds and scooters are generally similar in terms of usage, and their usage has increased, scooter riders appear to be safer than moped riders due to some combination of superior skills and safer riding behaviour. It is reasonable to expect that mopeds and scooters will remain popular in Queensland in future and that their usage may further increase, along with that of motorcycles. Future policy and planning should consider potential options for encouraging moped riders to acquire better riding skills and greater safety awareness. While rider training and licensing appears an obvious potential countermeasure, the effectiveness of rider training has not been established and other options should also be strongly considered. Such options might include rider education and safety promotion, while interventions could also target other road users and urban infrastructure. Future research is warranted in regard to moped and scooter safety, particularly where the use of those PTWs has increased substantially from low levels. Research could address areas such as rider training and licensing (including program evaluations), the need for more detailed and reliable data (particularly crash and exposure data), protective clothing use, risks associated with lane splitting and filtering, and tourist use of mopeds. Some of this research would likely be relevant to motorcycle use and safety, as well as that of mopeds and scooters.