970 resultados para Wheat straws
Resumo:
A series of laboratory and animal studies examined the use of chemical and biological agents to enhance the digestibility of Rhodes grass (grass) cut at 60 (young) and 100 (mature) days of regrowth and ensiled as big round bales. The treatments included an untreated control (C), a microbial inoculant (I), NaOH, CaO and NaOH plus inoculant (NaOH + I). Inoculant was grown anaerobically, using a starter culture of rumen fluid from cattle given Rhodes grass. Treatments C, 1, NaOH, NaOH + I, were offered separately to twelve dairy heifers, in a 3 X 4 randomized complete block design, repeated twice for each grass silage. C and I had substantial mould growth, compared with no visible mould in NaOH or NaOH + 1. CaO treatment was effective in preventing mould growth, but had little effect on the chemical composition and in sacco digestibility of mature grass silage. NaOH reduced NDF content and increased in sacco digestibility (P < 0.05) but not the in vivo digestibility (P > 0.05) of both mature- and young-grass silage. The effects of other treatments on nutritive value were non-significant at both stages of maturity. NaOH increased the intake of mature-grass silage by 24-26% (P < 0.05), but had little effect on the intake of young-grass silage (P > 0.05). Treatment I consistently reduced grass silage intake (P < 005) for young-grass silage. The findings of these studies show that treating mature Rhodes grass with NaOH will improve its nutritive value and reduce mould growth in conserved herbage. However none of the treatments in this study had any consistently positive effects on the in vivo nutritive value or storage quality of young-grass silage.
Resumo:
The role of shoot water status in mediating the decline in leaf elongation rate of nitrogen (N)-deprived barley plants was assessed. Plants were grown at two levels of N supply, with or without the application of pneumatic pressure to the roots. Applying enough pressure (balancing pressure) to keep xylem sap continuously bleeding from the cut surface of a leaf allowed the plants to remain at full turgor throughout the experiments. Plants from which N was withheld required a greater balancing pressure during both day and night. This difference in balancing pressure was greater at high (2.0 kPa) than low (1.2 kPa) atmospheric vapour pressure deficit (VPD). Pressurizing the roots did not prevent the decline in leaf elongation rate induced by withholding N at either high or low VPD. Thus low shoot water status did not limit leaf growth of N-deprived plants.
Resumo:
Avicennia marina is an important mangrove species with a wide geographical and climatic distribution which suggests that large amounts of genetic diversity are available for conservation and breeding programs. In this study we compare the informativeness of AFLPs and SSRs for assessing genetic diversity within and among individuals, populations and subspecies of A. marina in Australia. Our comparison utilized three SSR loci and three AFLP primer sets that were known to be polymorphic, and could be run in a single analysis on a capillary electrophoresis system, using different-colored fluorescent dyes. A total of 120 individuals representing six populations and three subspecies were samplcd. At the locus level, SSRs were considerably more variable than AFLPs, with a total of 52 alleles and an average heterozygosity of 0.78. Average heterozygosity for AFLPs was 0.193, but all of the 918 bands scored were polymorphic. Thus, AFLPs were considerably more efficient at revealing polymorphic loci than SSRs despite lower average heterozygosities. SSRs detected more genetic differentiation between populations (19 vs 9%) and subspecies (35 vs 11%) than AFLPs. Principal co-ordinate analysis revealed congruent patterns of genetic relationships at the individual, population and subspecific levels for both data sets. Mantel testing confirmed congruence between AFLP and SSR genetic distances among, but not within, population comparisons, indicating that the markers were segregating inde- pendently but that evolutionary groups (populations and subspecies) were similar. Three genetic criteria of importance for defining priorities for ex situ collections or in situ conservation programs (number of alleles, number of locally common alleles and number of private alleles) were correlated between the AFLP and SSR data sets. The congruence between AFLP and SSR data sets suggest that either method, or a combination, is applicable to expanded genetic studies of mangroves. The codominant nature of SSRs makes them ideal for further population-based investigations, such as mating-system analyses, for which the dominant AFLP markers are less well suited. AFLPs may be particularly useful for monitoring propagation programs and identifying duplicates within collections, since a single PCR assay can reveal many loci at once.
Resumo:
Pearl millet landraces from Rajasthan, India, yield significantly less than improved cultivars under optimum growing conditions, but not under stressed conditions. To successfully develop a simulation model for pearl millet, capable of capturing such genotype x environment (G x E) interactions for grain yield, we need to understand the causes of the observed yield interaction. The aim of this paper is to quantify the key parameters that determine the accumulation and partitioning of biomass: the,light extinction coefficient, radiation use efficiency (RUE), pattern of dry matter allocation to the leaf blades, the determination of grain number, and the rate and duration of dry matter accumulation into individual grains. We used data on improved cultivars and landraces, obtained from both published and unpublished sources collected at ICRISAT, Patancheru, India. Where possible, the effects of cultivar and axis (main shoot vs. tillers) on these parameters were analysed, as previous research suggested that G x E interactions for grain yield are associated with differences in tillering habit. Our results indicated there were no cultivar differences in extinction coefficient, RUE, and biomass partitioning before anthesis, and differences between axes in biomass partitioning were negligible. This indicates there was no basis for cultivar differences in the potential grain yield. Landraces, however, produced consistently less grain yield for a given rate of dry matter accumulation at anthesis than did improved cultivars. This was caused by a combination of low grain number and small grain size. The latter was predominantly due to a lower grain growth rate, as genotypic differences in the duration of grain filling were relatively small. Main shoot and tillers also had a similar duration of grain filling. The low grain yield of the landraces was associated with profuse nodal tillering, supporting the hypothesis that grain yield was below the potential yield that could be supported by assimilate availability. We hypothesise this is a survival strategy, which enhances the prospects to escape the effects of stress around anthesis. (C) 2002 E.J. van Oosterom. Published by Elsevier Science B.V. All rights reserved.
Resumo:
Evaporative cooling is extremely important for large-scale operation of rotating drum bioreactors (RDBs). Outlet water vapour concentrations were measured for a RDB containing wet wheat bran with the aim of determining the mass transfer coefficient for evaporation from the bran bed to the headspace. Mass transfer was expressed as the mass transfer coefficient times the area for transfer per unit volume of void space in the drum. Values of ka' were determined under combinations of aeration superficial velocities ranging from 0.006 to 0.017 ms(-1) and rotation rates ranging from 0 to 9 rpm. Mass transfer coefficients were evaluated using a variety of residence time distributions (RTDs) for flow in the gas phase including plug flow and well-mixed and a Central Jet RTD based on RTD studies. If plug flow is assumed, the degree of holdup at low effective Peclet (Pe(eff)) numbers gives an apparent under-estimate of ka' compared with empirical correlations. Values of ka' calculated using the Central Jet RTD agree well with values of ka' from literature correlations. There was a linear relationship between ka' and effective Peclet number: ka' = 2.32 x 10(-3) Pe(eff). (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Most studies of tiller development have not related the physiological and morphological features of each calm to its subsequent fertility. This introduced problems when trying to account for the effects of tillering on yield in crop models. The objective of this study was to detect the most likely early determinants of tiller fertility in sorghum by identifying hierarchies for emergence, fertility and grain number of tillers over a wide range of assimilate availabilities. Emergence, phenology, leaf area development and dry weight partitioning were quantified weekly for individual tillers and main culms of tillering and uniculm plants grown at one of four densities, from two to 16 plants m(-2). For a given plant in any given density, the same tiller hierarchy applied for emergence of tillers, fertility of the emerged tillers and their subsequent grain number. These results were observed over a range of tiller fertility rates (from 7 to 91%), fertile tiller number per plant at maturity (from 0.2 to 4.7), and tiller contribution to grain yield (from 5 to 78%). Tiller emergence was most probably related to assimilate supply and light quality. Development, fertility and contribution to yield of a specific tiller were highly dependent on growing conditions at the time of tiller emergence, particularly via early leaf area development of the tiller, which affected its subsequent leaf area accumulation. Assimilate availability in the main culm at the time of tiller emergence was the most likely early determinant of subsequent tiller fertility in this study. (C) 2002 Annals of Botany Company.
Resumo:
The prediction of tillering is poor or absent in existing sorghum crop models even though fertile tillers contribute significantly to grain yield. The objective of this study was to identify general quantitative relationships underpinning tiller dynamics of sorghum for a broad range of assimilate availabilities. Emergence, phenology, leaf area development and fertility of individual main calms and tillers were quantified weekly in plants grown at one of four plant densities ranging from two to 16 plants m(-2). On any given day, a tiller was considered potentially fertile (a posteriori) if its number of leaves continued to increase thereafter. The dynamics of potentially fertile tiller number per plant varied greatly with plant density, but could generally be described by three determinants, stable across plant densities: tiller emergence rate aligned with leaf ligule appearance rate; cessation of tiller emergence occurred at a stable leaf area index; and rate of decrease in potentially fertile tillers was linearly related to the ratio of realized to potential leaf area growth. Realized leaf area growth is the measured increase in leaf area, whereas potential leaf area growth is the estimated increase in leaf area if all potentially fertile tillers were to continue to develop. Procedures to predict this ratio, by estimating realized leaf area per plant from intercepted radiation and potential leaf area per plant from the number and type of developing axes, are presented. While it is suitable for modelling tiller dynamics in grain sorghum, this general framework needs to be validated by testing it in different environments and for other cultivars. (C) 2002 Annals of Botany Company.
Resumo:
The Agricultural Production Systems slMulator, APSIM, is a cropping system modelling environment that simulates the dynamics of soil-plant-management interactions within a single crop or a cropping system. Adaptation of previously developed crop models has resulted in multiple crop modules in APSIM, which have low scientific transparency and code efficiency. A generic crop model template (GCROP) has been developed to capture unifying physiological principles across crops (plant types) and to provide modular and efficient code for crop modelling. It comprises a standard crop interface to the APSIM engine, a generic crop model structure, a crop process library, and well-structured crop parameter files. The process library contains the major science underpinning the crop models and incorporates generic routines based on physiological principles for growth and development processes that are common across crops. It allows APSIM to simulate different crops using the same set of computer code. The generic model structure and parameter files provide an easy way to test, modify, exchange and compare modelling approaches at process level without necessitating changes in the code. The standard interface generalises the model inputs and outputs, and utilises a standard protocol to communicate with other APSIM modules through the APSIM engine. The crop template serves as a convenient means to test new insights and compare approaches to component modelling, while maintaining a focus on predictive capability. This paper describes and discusses the scientific basis, the design, implementation and future development of the crop template in APSIM. On this basis, we argue that the combination of good software engineering with sound crop science can enhance the rate of advance in crop modelling. Crown Copyright (C) 2002 Published by Elsevier Science B.V. All rights reserved.
Resumo:
Crop modelling has evolved over the last 30 or so years in concert with advances in crop physiology, crop ecology and computing technology. Having reached a respectable degree of acceptance, it is appropriate to review briefly the course of developments in crop modelling and to project what might be major contributions of crop modelling in the future. Two major opportunities are envisioned for increased modelling activity in the future. One opportunity is in a continuing central, heuristic role to support scientific investigation, to facilitate decision making by crop managers, and to aid in education. Heuristic activities will also extend to the broader system-level issues of environmental and ecological aspects of crop production. The second opportunity is projected as a prime contributor in understanding and advancing the genetic regulation of plant performance and plant improvement. Physiological dissection and modelling of traits provides an avenue by which crop modelling could contribute to enhancing integration of molecular genetic technologies in crop improvement. Crown Copyright (C) 2002 Published by Elsevier Science B.V. All rights reserved.
Development and characterization of polymorphic microsatellite markers in taro (Colocasia esculenta)
Resumo:
Microsatellite-containing sequences were isolated from enriched genomic libraries of taro (Colocasia esculenta (L.) Schott). The sequencing of 269 clones yielded 77 inserts containing repeat motifs. The majority of these (81.7%) were dinucleotide or trinucleotide repeats. The GT/CA repeat motif was the most common, accounting for 42% of all repeat types. From a total of 43 primer pairs designed, 41 produced markers within the expected size range. Sixteen (39%) were polymorphic when screened against a restricted set of taro genotypes from Southeast Asia and Oceania, with an average of 3.2 alleles detected on each locus. These markers represent a useful resource for taro germplasm management, genome mapping, and marker-assisted selection.
Resumo:
Clearing of native vegetation is a major threat to biodiversity in Australia. In Queensland, clearing has resulted in extensive ecosystem transformation, especially in the more fertile parts of the landscape. In this paper, we examine Queensland, Australian and some overseas evidence of the impact of clearing and related fragmentation effects on terrestrial biota. The geographic locus is the semi-arid regions. although we recognise that coastal regions have been extensively cleared. The evidence reviewed here suggests that the reduction of remnant vegetation to 30% will result in the loss of 25-35% of vertebrate fauna, with the full impact not realised for another 50-100 years, or even longer. Less mobile, habitat specialists and rare species appear to be particularly at risk. We propose three broad principles For effective biodiversity conservation in Queensland: (i) regional native vegetation retention thresholds of 50910: (ii) regional ecosystem thresholds of 30%: and (iii) landscape design and planning principles that protect large remnants, preferably > 2000 ha, as core habitats. Under these retention thresholds. no further clearing would be permitted in the extensively cleared biogeographic regions such as Brigalow Belt and New England Tablelands. Some elements of the biota. however, will require more detailed knowledge and targeted retention and management to ensure their security. The application of resource sustainability and economic criteria outlined elsewhere in this volume should be applied to ensure that the biogeographic regions in the north and west of Queensland that are largely intact continue to provide extensive wildlife habitat.
Resumo:
Poultry can be managed under different feeding systems, depending on the husbandry skills and the feed available. These systems include the following: (1) a complete dry feed offered as a mash ad libitum; (2) the same feed offered as pellets or crumbles ad libitum; (3) a complete feed with added whole grain; (4) a complete wet feed given once or twice a day; (5) a complete feed offered on a restricted basis; (6) choice feeding. Of all these, an interesting alternative to offering complete diets is choice feeding which can be applied on both a small or large commercial scale. Under choice feeding or free-choice feeding birds are usually offered a choice between three types of feedstuffs: (a) an energy source (e.g. maize, rice bran, sorghum or wheat); (b) a protein source (e.g. soyabean meal, meat meal, fish meal or coconut meal) plus vitamins and minerals and (c), in the case of laying hens, calcium in granular form (i.e. oyster-shell grit). This system differs from the modern commercial practice of offering a complete diet comprising energy and protein sources, ground and mixed together. Under the complete diet system, birds are mainly only able to exercise their appetite for energy. When the environmental temperature varies, the birds either over- or under-consume protein and calcium. The basic principle behind practising choice feeding with laying hens is that individual hens are able to select from the various feed ingredients on offer and compose their own diet, according to their actual needs and production capacity. A choice-feeding system is of particular importance to small poultry producers in developing countries, such as Indonesia, because it can substantially reduce the cost of feed. The system is flexible and can be constructed in such a way that the various needs of a flock of different breeds, including village chickens, under different climates can be met. The system also offers a more effective way to use home-produced grain, such as maize, and by-products, such as rice bran, in developing countries. Because oyster-shell grit is readily available in developing countries at lower cost than limestone, the use of cheaper oyster-shell grit can further benefit small-holders in these countries. These benefits apart, simpler equipment suffices when designing and building a feed mixer on the farm, and transport costs are lower. If whole (unground) grain is used, the intake of which is accompanied by increased efficiency of feed utilisation, the costs of grinding, mixing and many of the handling procedures associated with mash and pellet preparation are eliminated. The choice feedstuffs can all be offered in the current feed distribution systems, either by mixing the ingredients first or by using a bulk bin divided into three compartments.
Resumo:
The Agricultural Production Systems Simulator (APSIM) is a modular modelling framework that has been developed by the Agricultural Production Systems Research Unit in Australia. APSIM was developed to simulate biophysical process in farming systems, in particular where there is interest in the economic and ecological outcomes of management practice in the face of climatic risk. The paper outlines APSIM's structure and provides details of the concepts behind the different plant, soil and management modules. These modules include a diverse range of crops, pastures and trees, soil processes including water balance, N and P transformations, soil pH, erosion and a full range of management controls. Reports of APSIM testing in a diverse range of systems and environments are summarised. An example of model performance in a long-term cropping systems trial is provided. APSIM has been used in a broad range of applications, including support for on-farm decision making, farming systems design for production or resource management objectives, assessment of the value of seasonal climate forecasting, analysis of supply chain issues in agribusiness activities, development of waste management guidelines, risk assessment for government policy making and as a guide to research and education activity. An extensive citation list for these model testing and application studies is provided. Crown Copyright (C) 2002 Published by Elsevier Science B.V. All rights reserved.
Resumo:
Caustis blakei is an attractive cut foliage plant harvested from the wild in Australia and marketed under the name of koala fern. Previous attempts to propagate large numbers of this plant have been unsuccessful. The effect of four light irradiances on organogenesis from compact and friable callus of C. blakei was studied for 21 wk. Both callus types produced numerous primordial shoots but many failed to develop into green plantlets. However, significantly more primordial shoots and green plantlets developed on the friable callus than on the compact callus, and significantly more green plantlets were regenerated under the higher photon irradiances of 200 and 300 mumol m(-2) s(-1) than under the lower irradiances of 100 and 150 mumol m(-2) s(-1). The compact callus produced its maximum number of green plantlets early in the experiment (after 9 wk), while the friable callus continued to produce primordial shoots and green plantlets throughout the period of the experiment, and reached its maximum production of green plantlets at 21 wk under the irradiance of 300 mumol m(-2) s(-1). Organogenesis from friable callus under high irradiance (300 mumol m(-2) s(-1)) offers an efficient propagation method for C. blakei.
Resumo:
The effects of type of grain (wheat vs. sorghum) and oil supplement/kg diet [0, 20g olive oil (OL), 20g safflower oil (SO), 10 g OL plus 10 g SO (OLSO)], over a 12-week period on the performance, plasma and lipoproteins lipids [cholesterol (C), triglycerides (TG), phospholipid (P)], and yolk C and fatty acids concentrations of laying hens were studied. Hens fed on the sorghum diet had significantly (P