853 resultados para Wetland ecosystems
Resumo:
The increasing threat of global climate change is predicted to have immense influences on ecosystems worldwide, but could be particularly severe to vulnerable wetland environments such as the Everglades. This work investigates the impact global climate change could have on the hydrologic and vegetative makeup of Everglades National Park (ENP) under forecasted emissions scenarios. Using a simple stochastic model of aboveground water levels driven by a fluctuating rainfall input, we link across ENP a location's mean depth and percent time of inundation to the predicted changes in precipitation from climate change. Changes in the hydrologic makeup of ENP are then related to changes in vegetation community composition through the use of relationships developed between two publically available datasets. Results show that under increasing emissions scenarios mean annual precipitation was forecasted to decrease across ENP leading to a marked hydrologic change across the region. Namely, areas were predicted to be shallower in average depth of standing water and inundated less of the time. These hydrologic changes in turn lead to a shift in ENP's vegetative makeup, with xeric vegetative communities becoming more numerous and hydric vegetative communities becoming scarcer. Noticeably, the most widespread of vegetative communities, sawgrass, decreases in abundance under increasing emissions scenarios. These results are an important indicator of the effects climate change may have on the Everglades region and raise important management implications for those seeking to restore this area to its historical hydrologic and vegetative condition.
Resumo:
The influence of hydrological dynamics on vegetation distribution and the structuring of wetland environments is of growing interest as wetlands are modified by human action and the increasing threat from climate change. Hydrological properties have long been considered a driving force in structuring wetland communities. We link hydrological dynamics with vegetation distribution across Everglades National Park (ENP) using two publicly available datasets to study the probability structure of the frequency, duration, and depth of inundation events along with their relationship to vegetation distribution. This study is among the first to show hydrologic structuring of vegetation communities at wide spatial and temporal scales, as results indicate that the percentage of time a location is inundated and its mean depth are the principal structuring variables to which individual communities respond. For example, sawgrass, the most abundant vegetation type within the ENP, is found across a wide range of time inundated percentages and mean depths. Meanwhile, other communities like pine savanna or red mangrove scrub are more restricted in their distribution and found disproportionately at particular depths and inundations. These results, along with the probabilistic structure of hydropatterns, potentially allow for the evaluation of climate change impacts on wetland vegetation community structure and distribution.
Resumo:
Natural environmental gradients provide important information about the ecological constraints on plant and microbial community structure. In a tropical peatland of Panama, we investigated community structure (forest canopy and soil bacteria) and microbial community function (soil enzyme activities and respiration) along an ecosystem development gradient that coincided with a natural P gradient. Highly structured plant and bacterial communities that correlated with gradients in phosphorus status and soil organic matter content characterized the peatland. A secondary gradient in soil porewater NH4 described significant variance in soil microbial respiration and β-1-4-glucosidase activity. Covariation of canopy and soil bacteria taxa contributed to a better understanding of ecological classifications for biotic communities with applicability for tropical peatland ecosystems of Central America. Moreover, plants and soils, linked primarily through increasing P deficiency, influenced strong patterning of plant and bacterial community structure related to the development of this tropical peatland ecosystem.
Resumo:
In the Florida Everglades, tree islands are conspicuous heterogeneous elements in the herbaceous wetland landscape. We characterized the biogeochemical role of a seasonally flooded tree island during wet season inundation, specifically examining hydrologically mediated flows of nitrogen (N) and N retention by the tree island. We estimated ecosystem N standing stocks and fluxes, soil and litter N transformation rates, and hydrologic fluxes of N to quantify the net ecosystem N mass flux. Results showed that hydrologic sources of N were dominated by surface water loads of nitrate (NO3) and ammonium (NH4). Nitrate immobilization by soils and surficial leaf litter was an important sink for surface water dissolved inorganic N (DIN). We estimated that the net annual DIN retention by a seasonally flooded tree island was 20.5 ± 5.0 g m−2 during wet season inundation. Based on the estimated tree island surface water DIN loading rate, a seasonally flooded tree island retained 76% of imported DIN. As such, seasonally flooded tree islands have the potential to retain 55% of DIN entering the marsh landscape via upstream canal overland flow in the wet season. By increasing reactive surface area and DOC availability, we suggest that tree islands promote convergence of elements that enhance DIN retention. Tree islands of this region are thus important components of landscape-scale restoration efforts that seek to reduce sources of anthropogenic DIN to downstream estuaries.
Resumo:
Physiological processes and local-scale structural dynamics of mangroves are relatively well studied. Regional-scale processes, however, are not as well understood. Here we provide long-term data on trends in structure and forest turnover at a large scale, following hurricane damage in mangrove ecosystems of South Florida, U.S.A. Twelve mangrove vegetation plots were monitored at periodic intervals, between October 1992 and March 2005. Mangrove forests of this region are defined by a −1.5 scaling relationship between mean stem diameter and stem density, mirroring self-thinning theory for mono-specific stands. This relationship is reflected in tree size frequency scaling exponents which, through time, have exhibited trends toward a community average that is indicative of full spatial resource utilization. These trends, together with an asymptotic standing biomass accumulation, indicate that coastal mangrove ecosystems do adhere to size-structured organizing principles as described for upland tree communities. Regenerative dynamics are different between areas inside and outside of the primary wind-path of Hurricane Andrew which occurred in 1992. Forest dynamic turnover rates, however, are steady through time. This suggests that ecological, more-so than structural factors, control forest productivity. In agreement, the relative mean rate of biomass growth exhibits an inverse relationship with the seasonal range of porewater salinities. The ecosystem average in forest scaling relationships may provide a useful investigative tool of mangrove community biomass relationships, as well as offer a robust indicator of general ecosystem health for use in mangrove forest ecosystem management and restoration.
Resumo:
The composition and distribution of diatom algae inhabiting estuaries and coasts of the subtropical Americas are poorly documented, especially relative to the central role diatoms play in coastal food webs and to their potential utility as sentinels of environmental change in these threatened ecosystems. Here, we document the distribution of diatoms among the diverse habitat types and long environmental gradients represented by the shallow topographic relief of the South Florida, USA, coastline. A total of 592 species were encountered from 38 freshwater, mangrove, and marine locations in the Everglades wetland and Florida Bay during two seasonal collections, with the highest diversity occurring at sites of high salinity and low water column organic carbon concentration (WTOC). Freshwater, mangrove, and estuarine assemblages were compositionally distinct, but seasonal differences were only detected in mangrove and estuarine sites where solute concentration differed greatly between wet and dry seasons. Epiphytic, planktonic, and sediment assemblages were compositionally similar, implying a high degree of mixing along the shallow, tidal, and storm-prone coast. The relationships between diatom taxa and salinity, water total phosphorus (WTP), water total nitrogen (WTN), and WTOC concentrations were determined and incorporated into weighted averaging partial least squares regression models. Salinity was the most influential variable, resulting in a highly predictive model (r apparent 2 = 0.97, r jackknife 2 = 0.95) that can be used in the future to infer changes in coastal freshwater delivery or sea-level rise in South Florida and compositionally similar environments. Models predicting WTN (r apparent 2 = 0.75, r jackknife 2 = 0.46), WTP (r apparent 2 = 0.75, r jackknife 2 = 0.49), and WTOC (r apparent 2 = 0.79, r jackknife 2 = 0.57) were also strong, suggesting that diatoms can provide reliable inferences of changes in solute delivery to the coastal ecosystem.
Resumo:
The Comprehensive Everglades Restoration Plan (CERP) attempts to restore hydrology in the Northern and Southern Estuaries of Florida. Reefs of the Eastern oyster Crassostrea virginica are a dominant feature of the estuaries along the Southwest Florida coast. Oysters are benthic, sessile, filter-feeding organisms that provide ecosystem services by filtering the water column and providing food, shelter and habitat for associated organisms. As such, the species is an excellent sentinel organism for examining the impacts of restoration on estuarine ecosystems. The implementation of CERP attempts to improve: the hydrology and spatial and structural characteristics of oyster reefs, the recruitment and survivorship of C. virginica, and the reef-associated communities of organisms. This project links biological responses and environmental conditions relative to hydrological changes as a means of assessing positive or negative trends in oyster responses and population trends. Using oyster responses, we have developed a communication tool (i.e., Stoplight Report Card) based on CERP performance measures that can distinguish between responses to restoration and natural patterns. The Stoplight Report Card system is a communication tool that uses Monitoring and Assessment Program (MAP) performance measures to grade an estuary's response to changes brought about by anthropogenic input or restoration activities. The Stoplight Report Card consists of both a suitability index score for each organism metric as well as a trend score (− decreasing trend, +/− no change in trend, and + increasing trend). Based on these two measures, a component score (e.g., living density) is calculated by averaging the suitability index score and the trend score. The final index score is obtained by taking the geometric score of each component, which is then translated into a stoplight color for success (green), caution (yellow), or failure (red). Based on the data available for oyster populations and the responses of oysters in the Caloosahatchee Estuary, the system is currently at stage “caution.” This communication tool instantly conveys the status of the indicator and the suitability, while trend curves provide information on progress towards reaching a target. Furthermore, the tool has the advantage of being able to be applied regionally, by species, and collectively, in concert with other species, system-wide.
Resumo:
Recent attention has focused on the high rates of annual carbon sequestration in vegetated coastal ecosystems—marshes, mangroves, and seagrasses—that may be lost with habitat destruction (‘conversion’). Relatively unappreciated, however, is that conversion of these coastal ecosystems also impacts very large pools of previously-sequestered carbon. Residing mostly in sediments, this ‘blue carbon’ can be released to the atmosphere when these ecosystems are converted or degraded. Here we provide the first global estimates of this impact and evaluate its economic implications. Combining the best available data on global area, land-use conversion rates, and near-surface carbon stocks in each of the three ecosystems, using an uncertainty-propagation approach, we estimate that 0.15–1.02 Pg (billion tons) of carbon dioxide are being released annually, several times higher than previous estimates that account only for lost sequestration. These emissions are equivalent to 3–19% of those from deforestation globally, and result in economic damages of $US 6–42 billion annually. The largest sources of uncertainty in these estimates stems from limited certitude in global area and rates of land-use conversion, but research is also needed on the fates of ecosystem carbon upon conversion. Currently, carbon emissions from the conversion of vegetated coastal ecosystems are not included in emissions accounting or carbon market protocols, but this analysis suggests they may be disproportionally important to both. Although the relevant science supporting these initial estimates will need to be refined in coming years, it is clear that policies encouraging the sustainable management of coastal ecosystems could significantly reduce carbon emissions from the land-use sector, in addition to sustaining the well-recognized ecosystem services of coastal habitats.
Resumo:
1. The niche variation hypothesis predicts that among-individual variation in niche use will increase in the presence of intraspecific competition and decrease in the presence of interspecific competition. We sought to determine whether the local isotopic niche breadth of fish inhabiting a wetland was best explained by competition for resources and the niche variation hypothesis, by dispersal of individuals from locations with different prey resources or by a combination of the two. We analysed stable isotopes of carbon and nitrogen as indices of feeding niche and compared metrics of within-site spread to characterise site-level isotopic niche breadth. We then evaluated the explanatory power of competing models of the direct and indirect effects of several environmental variables spanning gradients of disturbance, competition strength and food availability on among-individual variation of the eastern mosquitofish (Gambusia holbrooki). 2. The Dispersal model posits that only the direct effect of disturbance (i.e. changes in water level known to induce fish movement) influences among-individual variation in isotopic niche. The Partitioning model allows for only direct effects of local food availability on among-individual variation. The Combined model allows for both hypotheses by including the direct effects of disturbance and food availability. 3. A linear regression of the Combined model described more variance than models limited to the variables of either the Dispersal or Partitioning models. Of the independent variables considered, the food availability variable (per cent edible periphyton) explained the most variation in isotopic niche breadth, followed closely by the disturbance variable (days since last drying event). 4. Structural equation modelling provided further evidence that the Combined model was best supported by the data, with the Partitioning and the Dispersal models only modestly less informative. Again, the per cent edible periphyton was the variable with the largest direct effect on niche variability, with other food availability variables and the disturbance variable only slightly less important. Indirect effects of heterospecific and conspecific competitor densities were also important, through their effects on prey density. 5. Our results support the Combined hypotheses, although partitioning mechanisms appear to explain the most diet variation among individuals in the eastern mosquitofish. The results also support some predictions of the niche variation hypothesis, although both conspecific and interspecific competition appeared to increase isotopic niche breadth in contrast to predictions that interspecific competition would decrease it. We think this resulted from high diet overlap of co-occurring species, most of which consume similar macroinvertebrates.
Resumo:
Wetlands are ecosystems commonly characterized by elevated levels of dissolved organic carbon (DOC), and although they cover a surface area less than 2 % worldwide, they are an important carbon source representing an estimated 15 % of global annual DOC flux to the oceans. Because of their unique hydrological characteristics, fire can be an important ecological driver in pulsed wetland systems. Consequently, wetlands may be important sources not only of DOC but also of products derived from biomass burning, such as dissolved black carbon (DBC). However, the biogeochemistry of DBC in wetlands has not been studied in detail. The objective of this study is to determine the environmental dynamics of DBC in different fire-impacted wetlands. An intensive, 2-year spatial and temporal dynamics study of DBC in a coastal wetland, the Everglades (Florida) system, as well as one-time sampling surveys for the other two inland wetlands, Okavango Delta (Botswana) and the Pantanal (Brazil), were reported. Our data reveal that DBC dynamics are strongly coupled with the DOC dynamics regardless of location, season or recent fire history. The statistically significant linear regression between DOC and DBC was applied to estimate DBC fluxes to the coastal zone through two main riverine DOC export routes in the Everglades ecosystem. The presence of significant amounts of DBC in these three fire-impacted ecosystems suggests that sub-tropical wetlands could represent an important continental-ocean carrier of combustion products from biomass burning. The discrimination of DBC molecular structure (i.e. aromaticity) between coastal and terrestrial samples, and between samples collected in wet and dry season, suggests that spatially-significant variation in DBC source strength and/or degree of degradation may also influence DBC dynamics.
Resumo:
Water flow and flooding duration in wetlands influence the structure and productivity of microbial communities partly through their influence on nutrient loading. The effect of flow-regulated nutrient loads is especially relevant for microbial communities in nutrient-poor settings, where delivery controls nutrient uptake rates and the intensity of microbial interactions. We examined the effect of hydrologic history and proximity to water sources on nutrient enrichment of benthic microbial assemblages (periphyton) and on their diatom species composition, along the artificial boundaries of Taylor Slough, a historically phosphorus-depleted drainage of the Florida Everglades. Concentrations of phosphorus in periphyton declined from the wetland boundary near inflow structures to 100-m interior, with spatial and temporal variability in rates dependent on proximity to and magnitude of water flow. Phosphorus availability influenced the beta diversity of diatom assemblages, with higher values near inflow structures where resources were greatest, while interior sites and reference transects contained assemblages with constant composition of taxa considered endemic to the Everglades. This research shows how hydrologic restoration may have unintended consequences when incoming water quality is not regulated, including a replacement of distinctive microbial assemblages by ubiquitous, cosmopolitan ones.
Resumo:
Until recently, it was believed that biological assimilation and gaseous nitrogen (N) loss through denitrification were the two major fates of nitrate entering or produced within most coastal ecosystems. Denitrification is often viewed as an important ecosystem service that removes reactive N from the ecosystem. However, there is a competing nitrate reduction process, dissimilatory nitrate reduction to ammonium (DNRA), that conserves N within the ecosystem. The recent application of nitrogen stable isotopes as tracers has generated growing evidence that DNRA is a major nitrogen pathway that cannot be ignored. Measurements comparing the importance of denitrification vs. DNRA in 55 coastal sites found that DNRA accounted for more than 30% of the nitrate reduction at 26 sites. DNRA was the dominant pathway at more than one-third of the sites. Understanding what controls the relative importance of denitrification and DNRA, and how the balance changes with increased nitrogen loading, is of critical importance for predicting eutrophication trajectories. Recent improvements in methods for assessing rates of DNRA have helped refine our understanding of the rates and controls of this process, but accurate measurements in vegetated sediment still remain a challenge.
Resumo:
We developed diatom-based prediction models of hydrology and periphyton abundance to inform assessment tools for a hydrologically managed wetland. Because hydrology is an important driver of ecosystem change, hydrologic alterations by restoration efforts could modify biological responses, such as periphyton characteristics. In karstic wetlands, diatoms are particularly important components of mat-forming calcareous periphyton assemblages that both respond and contribute to the structural organization and function of the periphyton matrix. We examined the distribution of diatoms across the Florida Everglades landscape and found hydroperiod and periphyton biovolume were strongly correlated with assemblage composition. We present species optima and tolerances for hydroperiod and periphyton biovolume, for use in interpreting the directionality of change in these important variables. Predictions of these variables were mapped to visualize landscape-scale spatial patterns in a dominant driver of change in this ecosystem (hydroperiod) and an ecosystem-level response metric of hydrologic change (periphyton biovolume). Specific diatom assemblages inhabiting periphyton mats of differing abundance can be used to infer past conditions and inform management decisions based on how assemblages are changing. This study captures diatom responses to wide gradients of hydrology and periphyton characteristics to inform ecosystem-scale bioassessment efforts in a large wetland.
Resumo:
The coastal wetlands of northeastern Florida Bay are seasonally-inundated dwarf mangrove habitat and serve as a primary foraging ground for wading birds nesting in Florida Bay. A common paradigm in pulse-inundated wetlands is that prey base fishes increase in abundance while the wetland is flooded and then become highly concentrated in deeper water refuges as water levels recede, becoming highly available to wading birds whose nesting success depends on these concentrations. Although widely accepted, the relationship between water levels, prey availability and nesting success has rarely been quantified. I examine this paradigm using Roseate Spoonbills that nest on the islands in northeastern Florida Bay and forage on the mainland. Spoonbill nesting success and water levels on their foraging grounds have been monitored since 1987 and prey base fishes have been systematically sampled at as many as 10 known spoonbill foraging sites since 1990. Results demonstrated that the relationship between water level and prey abundance was not linear but rather there is likely a threshold, or series of thresholds, in water level that result in concentrated prey. Furthermore, the study indicates that spoonbills require water level-induced prey concentrations in order to have enough food available to successfully raise young.