997 resultados para Wave variability plethysmography
Resumo:
The Arabian Sea is an area of complex air-sea interaction processes with seasonal reversing monsoons. The associated thermohaline variability in the upper layers appears to control the large scale monsoon flow which is not yet completely understood. The variability in the thermohaline fields is known to occur in temporal domain ranging from intra-diurnal to inter-annual time scales and on spatial domains of few tens of kilometers to few thousands of kilometers. In the Arabian Sea though the surface temperature was routinely measured by both conventional measurements and satellites, the corresponding information on the subsurface thermohaline field is very sparse due to the lack cw adequate measurements. In such cases the numerical models offer promise in providing information on the subsurface features given an initial thermohaline field and surface heat flux boundary conditions. This thesis is an outcome of investigations carried out on the various aspects of the thermohaline variability on different time scales. In addition to the description of the mean annual cycle. the one dimensional numerical models of Miller (1976) and Price et a1 (1986) are utilised to simulate the observed mixed layer characteristics at selected locations in the Arabian Sea on time scales ranging from intra-diurnal to synoptic scales under variable atmospheric forcing.
Resumo:
A better understanding of the rainfall climatology of the Middle East region identifying the mechanisms responsible for the rain producing systems is essential for effective utilization of the water resources over the arid region. A comprehensive analysis on the rainfall climatology of the Middle East region is carried out to bring out the spatial and temporal variation of rainfall and mechanisms responsible for the rain events. The study was carried out utilizing rainfall, OLR, wind and humidity data sets procured from TRMM, NOAA and NCEP-NCAR. Climatology of annual rainfall brings out two areas of alarmingly low rainfall in the Middle East region: one in Egypt, Jordan and adjoining areas and the other in the southern part of Saudi Arabia. Daily rainfall analysis indicates that northern region gets rainfall mainly during winter and spring associated with the passage of Mediterranean low pressure systems whereas rain over the southern region is caused mainly by the monsoon organized convection, cross equatorial flow and remnants of low pressure systems associated with the monsoon during the summer season. Thermodynamic structure of the atmosphere reveals that the region does not have frequent local convection due to insufficient moisture content. The sinking motion associated with the sub tropic high pressure system and subsidence associated with the Walker circulation are responsible for maintaining warm and dry air over the region.
Resumo:
Heavy metals in the surface sediments of the two coastal ecosystems of Cochin, southwest India were assessed. The study intends to evaluate the degree of anthropogenic influence on heavy metal concentration in the sediments of the mangrove and adjacent estuarine stations using enrichment factor and geoaccumulation index. The inverse relationship of Cd and Zn with texture in the mangrove sediments suggested the anthropogenic enrichment of these metals in the mangrove systems. In the estuarine sediments, the absence of any significant correlation of the heavy metals with other sedimentary parameters and their strong interdependence revealed the possibility that the input is not through the natural weathering processes. The analysis of enrichment factor indicated a minor enrichment for Pb and Zn in mangrove sediments. While, extremely severe enrichment for Cd, moderate enrichment for Zn and minor enrichment of Pb were observed in estuarine system. The geo accumulation index exhibited very low values for all metals except Zn, indicating the sediments of the mangrove ecosystem are unpolluted to moderately polluted by anthropogenic activities. However, very strongly polluted condition for Cd and a moderately polluted condition for Zn were evident in estuarine sediments
Resumo:
The mangroves of Kerala are fast disappearing due to developmental activities.There are very few studies conducted in the chemical aspects of these ecosystems.The main objective of this study is to assess the spatial and seasonal variation of hydrographical as well as nutrients in mangrove ecosystems along Kerala coast. Five sampling sites least intervened by industries were selected for the study. Sampling was done for a period of six months in monthly intervals. A monsoonal hike of dissolved nutrients was observed in all ecosystems except in the constructed mangrove wetland. The constructed wetland exhibited a different hydrography and nutrient level in all seasons. The mangrove forest in this area consists of the species Bruguiera gymnorrhiza which has been planted since forty years.
Resumo:
Holographic grating with good storage life in poly(vinyl alcohol) based photopolymer film, prepared by gravity settling method, with reduced concentration of the dye was found to give good diffraction efficiency without crosslinking. The material was found to show good diffraction efficiency and sensitivity (75% diffraction efficiency at exposure energy of 80 mJ/cm2). The shelf life of the photopolymer solution could be improved by storage at a temperature 4 C in refrigerator
Resumo:
Cochin University of Science & Technology
Resumo:
The dynamics of molecular multiphoton ionization and fragmentation of a diatomic molecule (Na_2) have been studied in molecular beam experiments. Femtosecond laser pulses from an amplified colliding-pulse mode-locked (CPM) ring dye laser are employed to induce and probe the molecular transitions. The final continuum states are analyzed by photoelectron spectroscopy, by ion mass spectrometry and by measuring the kinetic energy of the formed ionic fragments. Pump-probe spectra employing 70-fs laser pulses have been measured to study the time dependence of molecular multiphoton ionization and fragmentation. The oscillatory structure of the transient spectra showing the dynamics on the femtosecond time scale can best be understood in terms of the motion of wave packets in bound molecular potentials. The transient Na_2^+ ionization and the transient Na^+ fragmentation spectra show that contributions from direct photoionization of a singly excited electronic state and from excitation and autoionization of a bound doubly excited molecular state determine the time evolution of molecular multiphoton ionization.
Resumo:
The motion of a vibrational wave packet in the bound A(^1 \summe^+_u) electronic state of the sodium dimer is detected in a femtosecond pump/probe molecular beam experiment. For short times harmonic motion is seen in the total ion yield of Na^+_2 as a function of delay time between the two laser pulses. The spreading of the wave packet results in the loss of the periodic variation of the ion signal. For longer delay times (47 ps) the wave packet regains its initial form which is reflected in the revival structure of the Na^+_2 signal. Time-dependent quantum calculations reproduce the measured effects.
Resumo:
This study analyzes the linear relationship between climate variables and milk components in Iran by applying bootstrapping to include and assess the uncertainty. The climate parameters, Temperature Humidity Index (THI) and Equivalent Temperature Index (ETI) are computed from the NASA-Modern Era Retrospective-Analysis for Research and Applications (NASA-MERRA) reanalysis (2002–2010). Milk data for fat, protein (measured on fresh matter bases), and milk yield are taken from 936,227 milk records for the same period, using cows fed by natural pasture from April to September. Confidence intervals for the regression model are calculated using the bootstrap technique. This method is applied to the original times series, generating statistically equivalent surrogate samples. As a result, despite the short time data and the related uncertainties, an interesting behavior of the relationships between milk compound and the climate parameters is visible. During spring only, a weak dependency of milk yield and climate variations is obvious, while fat and protein concentrations show reasonable correlations. In summer, milk yield shows a similar level of relationship with ETI, but not with temperature and THI. We suggest this methodology for studies in the field of the impacts of climate change and agriculture, also environment and food with short-term data.
Resumo:
A promising technique for the large-scale manufacture of micro-fluidic devices and photonic devices is hot embossing of polymers such as PMMA. Micro-embossing is a deformation process where the workpiece material is heated to permit easier material flow and then forced over a planar patterned tool. While there has been considerable, attention paid to process feasibility very little effort has been put into production issues such as process capability and eventual process control. In this paper, we present initial studies aimed at identifying the origins and magnitude of variability for embossing features at the micron scale in PMMA. Test parts with features ranging from 3.5- 630 µm wide and 0.9 µm deep were formed. Measurements at this scale proved very difficult, and only atomic force microscopy was able to provide resolution sufficient to identify process variations. It was found that standard deviations of widths at the 3-4 µm scale were on the order of 0.5 µm leading to a coefficient of variation as high as 13%. Clearly, the transition from test to manufacturing for this process will require understanding the causes of this variation and devising control methods to minimize its magnitude over all types of parts.
Resumo:
We present the results of GaInNAs/GaAs quantum dot structures with GaAsN barrier layers grown by solid source molecular beam epitaxy. Extension of the emission wavelength of GaInNAs quantum dots by ~170nm was observed in samples with GaAsN barriers in place of GaAs. However, optimization of the GaAsN barrier layer thickness is necessary to avoid degradation in luminescence intensity and structural property of the GaInNAs dots. Lasers with GaInNAs quantum dots as active layer were fabricated and room-temperature continuous-wave lasing was observed for the first time. Lasing occurs via the ground state at ~1.2μm, with threshold current density of 2.1kA/cm[superscript 2] and maximum output power of 16mW. These results are significantly better than previously reported values for this quantum-dot system.
Resumo:
In the field of biologics production, productivity and stability of the transfected gene of interest are two very important attributes that dictate if a production process is viable. To further understand and improve these two traits, we would need to further our understanding of the factors affecting them. These would include integration site of the gene, gene copy number, cell phenotypic variation and cell environment. As these factors play different parts in the development process, they lead to variable productivity and stability of the transfected gene between clones, the well-known phenomenon of “clonal variation”. A study of this phenomenon and how the various factors contribute to it will thus shed light on strategies to improve productivity and stability in the production cell line. Of the four factors, the site of gene integration appears to be one of the most important. Hence, it is proposed that work is done on studying how different integration sites affect the productivity and stability of transfected genes in the development process. For the study to be more industrially relevant, it is proposed that the Chinese Hamster Ovary dhfr-deficient cell line, CHO-DG44, is used as the model system.
Resumo:
Developments in the statistical analysis of compositional data over the last two decades have made possible a much deeper exploration of the nature of variability, and the possible processes associated with compositional data sets from many disciplines. In this paper we concentrate on geochemical data sets. First we explain how hypotheses of compositional variability may be formulated within the natural sample space, the unit simplex, including useful hypotheses of subcompositional discrimination and specific perturbational change. Then we develop through standard methodology, such as generalised likelihood ratio tests, statistical tools to allow the systematic investigation of a complete lattice of such hypotheses. Some of these tests are simple adaptations of existing multivariate tests but others require special construction. We comment on the use of graphical methods in compositional data analysis and on the ordination of specimens. The recent development of the concept of compositional processes is then explained together with the necessary tools for a staying- in-the-simplex approach, namely compositional singular value decompositions. All these statistical techniques are illustrated for a substantial compositional data set, consisting of 209 major-oxide and rare-element compositions of metamorphosed limestones from the Northeast and Central Highlands of Scotland. Finally we point out a number of unresolved problems in the statistical analysis of compositional processes
Resumo:
The chemical composition of sediments and rocks, as well as their distribution at the Martian surface, represent a long term archive of processes, which have formed the planetary surface. A survey of chemical compositions by means of Compositional Data Analysis represents a valuable tool to extract direct evidence for weathering processes and allows to quantify weathering and sedimentation rates. clr-biplot techniques are applied for visualization of chemical relationships across the surface (“chemical maps”). The variability among individual suites of data is further analyzed by means of clr-PCA, in order to extract chemical alteration vectors between fresh rocks and their crusts and for an assessment of different source reservoirs accessible to soil formation. Both techniques are applied to elucidate the influence of remote weathering by combined analysis of several soil forming branches. Vector analysis in the Simplex provides the opportunity to study atmosphere surface interactions, including the role and composition of volcanic gases
Resumo:
Resumen tomado de la publicaci??n