952 resultados para Water requirements
Resumo:
The impact of excessive sediment loads entering into the Great Barrier Reef lagoon has led to increased awareness of land condition in grazing lands. Improved ground cover and land condition have been identified as two important factors in reducing sediment loads. This paper reports the economics of land regeneration using case studies for two different land types in the Fitzroy Basin. The results suggest that for sediment reduction to be achieved from land regeneration of more fertile land types (brigalow blackbutt) the most efficient method of allocating funds would be through extension and education. However for less productive country (narrow leaved ironbark woodlands) incentives will be required. The analysis also highlights the need for further scientific data to undertake similar financial assessments of land regeneration for other locations in Queensland.
Resumo:
In this report we analyse the private financial-economic impacts of transitioning to improved sugarcane management in the National Resource Management regions of the Wet Tropics, Burdekin Dry Tropics and Mackay Whitsundays. In order to do so, we: 1) compare farm GMs; 2) present information on capital investment associated with the transition; 3) perform a net present value analysis of the investments and; 4) undertake a risk analysis for cane and legume yields and prices. It must be noted that transaction costs are not captured within this project.
Resumo:
Boundary layer flow visualization in water with surface heat transfer was carried out on a body of revolution which had the predicted possibility of laminar separation under isothermal conditions. Flow visualization was by in-line holographic technique. Boundary layer stabilization, including elimination of laminar separation, was observed to take place on surface heating. Conversely, boundary layer destabilization was observed on surface cooling. These findings are consistent with the theoretical predictions of Wazzan et al. in The stability and transition of heated and cooled incompressible laminar boundary layers, in Proceedings of the Fourth International Heat Transfer Conference, Vol. 2, FCI 4. Elsevier, Amsterdam (1970).
Resumo:
Dairy farms located in the subtropical cereal belt of Australia rely on winter and summer cereal crops, rather than pastures, for their forage base. Crops are mostly established in tilled seedbeds and the system is vulnerable to fertility decline and water erosion, particularly over summer fallows. Field studies were conducted over 5 years on contrasting soil types, a Vertosol and Sodosol, in the 650-mm annual-rainfall zone to evaluate the benefits of a modified cropping program on forage productivity and the soil-resource base. Growing forage sorghum as a double-crop with oats increased total mean annual production over that of winter sole-crop systems by 40% and 100% on the Vertosol and Sodosol sites respectively. However, mean annual winter crop yield was halved and overall forage quality was lower. Ninety per cent of the variation in winter crop yield was attributable to fallow and in-crop rainfall. Replacing forage sorghum with the annual legume lablab reduced fertiliser nitrogen (N) requirements and increased forage N concentration, but reduced overall annual yield. Compared with sole-cropped oats, double-cropping reduced the risk of erosion by extending the duration of soil water deficits and increasing the time ground was under plant cover. When grown as a sole-crop, well fertilised forage sorghum achieved a mean annual cumulative yield of 9.64 and 6.05 t DM/ha on the Vertosol and Sodosol, respectively, being about twice that of sole-cropped oats. Forage sorghum established using zero-tillage practices and fertilised at 175 kg N/ha. crop achieved a significantly higher yield and forage N concentration than did the industry-standard forage sorghum (conventional tillage and 55 kg N/ha. crop) on the Vertosol but not on the Sodosol. On the Vertosol, mean annual yield increased from 5.65 to 9.64 t DM/ha (33 kg DM/kg N fertiliser applied above the base rate); the difference in the response between the two sites was attributed to soil type and fertiliser history. Changing both tillage practices and N-fertiliser rate had no affect on fallow water-storage efficiency but did improve fallow ground cover. When forage sorghum, grown as a sole crop, was replaced with lablab in 3 of the 5 years, overall forage N concentration increased significantly, and on the Vertosol, yield and soil nitrate-N reserves also increased significantly relative to industry-standard sorghum. All forage systems maintained or increased the concentration of soil nitrate-N (0-1.2-m soil layer) over the course of the study. Relative to sole-crop oats, alternative forage systems were generally beneficial to the concentration of surface-soil (0-0.1 m) organic carbon and systems that included sorghum showed most promise for increasing soil organic carbon concentration. We conclude that an emphasis on double-or summer sole-cropping rather than winter sole-cropping will advantage both farm productivity and the soil-resource base.
Resumo:
There is a large gap between the refined approaches to characterise genotypes and the common use of location and season as a coarse surrogate for environmental characterisation of breeding trials. As a framework for breeding, the aim of this paper is quantifying the spatial and temporal patterns of thermal and water stress for field pea in Australia. We compiled a dataset for yield of the cv. Kaspa measured in 185 environments, and investigated the associations between yield and seasonal patterns of actual temperature and modelled water stress. Correlations between yield and temperature indicated two distinct stages. In the first stage, during crop establishment and canopy expansion before flowering, yield was positively associated with minimum temperature. Mean minimum temperature below similar to 7 degrees C suggests that crops were under suboptimal temperature for both canopy expansion and radiation-use efficiency during a significant part of this early growth period. In the second stage, during critical reproductive phases, grain yield was negatively associated with maximum temperature over 25 degrees C. Correlations between yield and modelled water supply/demand ratio showed a consistent pattern with three phases: no correlation at early stages of the growth cycle, a progressive increase in the association that peaked as the crop approached the flowering window, and a progressive decline at later reproductive stages. Using long-term weather records (1957-2010) and modelled water stress for 104 locations, we identified three major patterns of water deficit nation wide. Environment type 1 (ET1) represents the most favourable condition, with no stress during most of the pre-flowering phase and gradual development of mild stress after flowering. Type 2 is characterised by increasing water deficit between 400 degree-days before flowering and 200 degree-days after flowering and rainfall that relieves stress late in the season. Type 3 represents the more stressful condition with increasing water deficit between 400 degree-days before flowering and maturity. Across Australia, the frequency of occurrence was 24% for ET1, 32% for ET2 and 43% for ET3, highlighting the dominance of the most stressful condition. Actual yield averaged 2.2 t/ha for ET1, 1.9 t/ha for ET2 and 1.4 t/ha for ET3, and the frequency of each pattern varied substantially among locations. Shifting from a nominal (i.e. location and season) to a quantitative (i.e. stress type) characterisation of environments could help improving breeding efficiency of field pea in Australia.
Resumo:
Photovoltaic (PV) panels and electric domestic water heater with storage (DWH) are widely used in households in many countries. However, DWH should be explored as an energy storage mechanism before batteries when households have excess PV energy. Through a residential case study in Queensland, Australia, this paper presents a new optimized design and control solution to reduce water heating costs by utilizing existing DWH energy storage capacity and increasing PV self-consumption for water heating. The solution is produced by evaluating the case study energy profile and numerically maximizing the use of PV for DWH. A conditional probability matrix for different solar insolation and hot water usage days is developed to test the solution. Compared to other tariffs, this solution shows cost reduction from 20.8% to 63.3% This new solution could encourage solar households move to a more economical and carbon neutral water heating method.
Resumo:
Free proline content in Ragi (Eleusine coracana) leaves increased markedly (6 to 85 fold) as the degree of water stress, created by polyethylene gylcol treatment, was prolonged There was also a marginal increase in soluble proteins in the stressed leaves as compared to that in the controls. Water stress stimulated the activities of ornithine aminotransferase and pyrroline-5-carboxylate reductase, the enzymes of proline biosynthesis and markedly inhibited the enzymes involved in proline degradation viz., proline oxidase and pyrroline-5-carboxylate dehydrogenase. These results suggest that increase in free proline content of Ragi leaves could be due to enhanced activities of the enzymes synthesizing proline but more importantly due to severe inhibition of the enzymes degrading proline. These observations establish for the first time, the pathway of proline metabolism in plants by way of detection of the activities of all the enzymes involved and also highlight the role of these enzymes in proline accumulation during water stress.
Resumo:
The classical problem of surface water-wave scattering by two identical thin vertical barriers submerged in deep water and extending infinitely downwards from the same depth below the mean free surface, is reinvestigated here by an approach leading to the problem of solving a system of Abel integral equations. The reflection and transmission coefficients are obtained in terms of computable integrals. Known results for a single barrier are recovered as a limiting case as the separation distance between the two barriers tends to zero. The coefficients are depicted graphically in a number of figures which are identical with the corresponding figures given by Jarvis (J Inst Math Appl 7:207-215, 1971) who employed a completely different approach involving a Schwarz-Christoffel transformation of complex-variable theory to solve the problem.
Resumo:
The crystal structure of the cobalt( 11) complex with 2'-deoxyinosine 5'-monophosphate (5'- dlMP), [Co(5'-dlMP) (H,0),]-2H20, has been analysed by X-ray diffraction. The complex crystallizes in the space group P2,2,2, with a = 6.877(3), b = 10.904(2), c = 25.421 (6) A, and Z = 4. The structure was solved by the heavy-atom method and refined to an R value of 0.043 using 1 776 unique reflections. The cobalt ion binds only to the 6-oxopurine base of the nucleotide at the N(7) position, the octahedral co-ordination of the metal being completed by five water oxygens. The phosphate oxygens are involved in hydrogen bonding with the co-ordinated water molecules. The structure is closely similar to that of the corresponding ribonucleotide complex. The nucleotide has the energetically preferred conformation: an anti base, a C(3') -endo sugar pucker, and a gauche-gauche conformation about the C(4')-C( 5') bond. The significance of sugar puckering in the monomeric complexes of general formula [ M (5'-nucleotide) (H20),] is explained in terms of the structural requirements for metal-water-phosphate bridging interactions.
Resumo:
Many aquatic species are linked to environmental drivers such as temperature and salinity through processes such as spawning, recruitment and growth. Information is needed on how fished species may respond to altered environmental drivers under climate change so that adaptive management strategies can be developed. Barramundi (Lates calcarifer) is a highly prized species of the Indo-West Pacific, whose recruitment and growth is driven by river discharge. We developed a monthly age- and length-structured population model for barramundi. Monte Carlo Markov Chain simulations were used to explore the population's response to altered river discharges under modelled total licenced water abstraction and projected climate change, derived and downscaled from Global Climate Model A1FI. Mean values of exploitable biomass, annual catch, maximum sustainable yield and spawning stock size were significantly reduced under scenarios where river discharge was reduced; despite including uncertainty. These results suggest that the upstream use of water resources and climate change have potential to significantly reduce downstream barramundi stock sizes and harvests and may undermine the inherent resilience of estuarine-dependent fisheries. © 2012 CSIRO.
Resumo:
Genotypic variability in root system architecture has been associated with root angle of seedlings and water extraction patterns of mature plants in a range of crops. The potential inclusion of root angle as a selection criterion in a sorghum breeding program requires (1) availability of an efficient screening method, (2) presence of genotypic variation with high heritability, and (3) an association with water extraction pattern. The aim of this study was to determine the feasibility for inclusion of nodal root angle as a selection criterion in sorghum breeding programs. A high-throughput phenotypic screen for nodal root angle in young sorghum plants has recently been developed and has been used successfully to identify significant variation in nodal root angle across a diverse range of inbred lines and a mapping population. In both cases, heritabilities for nodal root angle were high. No association between nodal root angle and plant size was detected. This implies that parental inbred lines could potentially be used to asses nodal root angle of their hybrids, although such predictability is compromised by significant interactions. To study effects of nodal root angle on water extraction patterns of mature plants, four inbred lines with contrasting nodal root angle at seedling stage were grown until at least anthesis in large rhizotrons. A consistent trend was observed that nodal root angle may affect the spatial distribution of root mass of mature plants and hence their ability to extract soil water, although genotypic differences were not significant. The potential implications of this for specific adaptation to drought stress are discussed. Results suggest that nodal root angle of young plants can be a useful selection criterion for specific drought adaptation, and could potentially be used in molecular breeding programs if QTLs for root angle can be identified. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Root architecture traits in wheat are important in deep soil moisture acquisition and may be used to improve adaptation to water-limited environments. The genetic architecture of two root traits, seminal root angle and seminal root number, were investigated using a doubled haploid population derived from SeriM82 and Hartog. Multiple novel quantitative trait loci (QTL) were identified, each one having a modest effect. For seminal root angle, four QTL (-log10(P) >3) were identified on 2A, 3D, 6A and 6B, and two suggestive QTL (-log10(P) >2) on 5D and 6B. For root number, two QTL were identified on 4A and 6A with four suggestive QTL on 1B, 3A, 3B and 4A. QTL for root angle and root number did not co-locate. Transgressive segregation was found for both traits. Known major height and phenology loci appear to have little effect on root angle and number. Presence or absence of the T1BL.1RS translocation did not significantly influence root angle. Broad sense heritability (h 2) was estimated as 50 % for root angle and 31 % for root number. Root angle QTL were found to be segregating between wheat cultivars adapted to the target production region indicating potential to select for root angle in breeding programs. © 2013 Springer-Verlag Berlin Heidelberg.