901 resultados para Washington State Liquor Control Board.
Resumo:
Microvibrations, at frequencies between 1 and 1000 Hz, generated by on board equipment, propagate throughout a spacecraft structure affecting the performance of sensitive payloads. The purpose of this work is to investigate strategies to model and reduce these dynamic disturbances by active control. Initial studies were performed by considering a mass loaded panel where the disturbance excitation source consisted of point forces, the objective being to minimise the displacement at an arbitrary output location. Piezoelectric patches acting as sensors and actuators were used. The equations of motion are derived by using Lagrange's equation with modal shapes as Ritz functions. The number of sensors/actuators and their location is variable. The set of equations obtained is then transformed into state variables and some initial controller design studies have been undertaken. These are based on feedback control implemented using a full state feedback and an observer which reconstructs the state vector from the available sensor signal. Here, the basics behind the structural modelling and controller design will be described. This preliminary analysis will also be used to identify short to medium term further work.
Resumo:
The contribution described in this paper is an algorithm for learning nonlinear, reference tracking, control policies given no prior knowledge of the dynamical system and limited interaction with the system through the learning process. Concepts from the field of reinforcement learning, Bayesian statistics and classical control have been brought together in the formulation of this algorithm which can be viewed as a form of indirect self tuning regulator. On the task of reference tracking using a simulated inverted pendulum it was shown to yield generally improved performance on the best controller derived from the standard linear quadratic method using only 30 s of total interaction with the system. Finally, the algorithm was shown to work on the simulated double pendulum proving its ability to solve nontrivial control tasks. © 2011 IEEE.