905 resultados para Wages and labor productivity


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work was to evaluate the performance of three Japanese group cucumber hybrids, which were cultivated in two cultivation systems. The experiment was designed in a split-plot randomized block design with two cultivation systems (coconut fiber and soil) for commercial Japanese cucumber hybrids ('Tsuyataro', 'Yoshinari' and 'Nankyoku'). After harvesting the cucumbers, we evaluated the number of marketable fruits per plant, the average fruit length, the mean fruit diameter, the bottom fruit diameter, the marketable production of fruits per plant and the marketable yield per hectare. There were significant interactions between the cultivation system and the hybrid, as indicated by the number of marketable fruits. The Nankyoku hybrid had the highest average (14.54 fruits pl(-1)), although it did not differ from the Yoshinari hybrid when grown in coconut fiber. In soil culture, the Yoshinari hybrid had the highest average number of fruits per plant (10.12 fruits pl(-1)) and did not differ from the Tsuyataro hybrid. Cultivation in coconut fiber provided better results for production traits and plant productivity. 'Yoshinari' and 'Nankyoku' were the most productive hybrids. Based on the cucumber cultivation results from a protected environment, the cultivation of hybrid Japanese cucumbers and Yoshinari and Nankyoku hybrids in coconut fiber is recommended.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Ciências Ambientais - Sorocaba

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The carbohydrates translocation and consequently growth and production of fig tree (Ficuscarica L.) vary according to the different management on cultivation conditions. The aim of this study was to evaluate the changes in the levels and total carbohydrates accumulation together with growth and “Roxo de Valinhos” fig trees production onimplementation of orchards in initial phase, cultivated with and without irrigation. We adopted a factorial arrangement (2 x 7) with four repetitions distributed in installments (with and without irrigation) subdivided in time (collect time). Destructive analyzes were performed at 40, 80, 120, 160, 200, 240 and 280 days after pruning (DAP) and are measured: stem diameter and branch, stem length and branch, number of leaves, internodes and fruit. Subsequently, the plant parts were sectioned to obtain the leaf area, length and roots volume, fresh and dry matter weight. The number, weight and total productivity of fruits were evaluated. The media of all growth attributes and production characteristics were higher in treatments with water irrigation. The total carbohydrate content was higher at 120 and 160 DAP and the carbohydrates accumulation was increasing for most institutions over the plants development, except for the leaves that showed a decrease in the levels at 160 DAP. The fruits showed greater carbohydrates accumulation in relation to the other evaluated organs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The evaluation of the new cultivars adaptation and yield potential of Mangifera indica L. provides tools to assist and improve the mango production in different climates conditions. This study aimed to evaluate the phenological and reproductive development of five mango cultivars (Bourbon, Haden, Palmer, Parwin and Tommy Atkins), on climate conditions in dry land and four production cycles (from 08/2007 to 01/2011), at São Manuel, São Paulo state, Brazil. The variables were total plant height, trunk height, stem diameter and the first insertion diameter, fruits physical characteristics, yield and harvest period, flowering seasonality and morphological characterization of the inflorescences. It was found that the four-year-old plants of Haden cv. reach 4.0 m high and 0.20 m of trunk diameter. Bourbon cultivar had the highest flowering period, from April to October. Tommy Atkins cv. had productivities of 14779.07 kg∙ha−1 in the fourth cycle and the productivity of Bourbon, Haden and Palmer cultivars was alternated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trade liberalization policies in Guatemala have impacted agricultural production. This thesis focuses on how trade liberalization has happened, what have been the impacts at a national level and describes how a community has adapted to the implementation of these policies. The implementation of trade was influenced by several, international and national institutions. Among the international institutions are the World Bank, the World Trade Organization and the United States Agency for International Development. At the national level the institutions that have partaken in shaping the trade policies are the military and the owners of capital and labor. The implementation of trade policies at a national level has affected national corn prices, population level diets and to some extent reduced poverty levels. At a local level trade liberalization policies have impacted land holdings, increased intensification of agriculture, including agrochemical, machinery and crop plantations per year, and consumption rates of corn have been affected. Maximization of the benefits and minimization of the detrimental effects can happen with the implementation of policies that promote food security, improve access to health and education, and prevent environmental and human health consequences from the intensification of agriculture and at the same time continue with the production of non-traditional agricultural products.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-resolution records of the past 2000 yr are compared in a north–south transect (28° N to 24° N) of three cores from the eastern slopes of the Guaymas, Carmen, and Pescadero Basins of the Gulf of California (hereafter referred to as the “Gulf”). Evenly-spaced samples from the varved sediments in each core allow sample resolution ranging from ∼ 16 to ∼ 37 yr. Diatoms and silicoflagellates capture the seasonal variation between a late fall to early spring period of high biosiliceous productivity, that is driven by northwest winds, and a summer period of warmer, more stratified waters during which these winds slacken and/or reverse direction (monsoonal flow). As these winds decrease, tropical waters enter the Gulf and spread northward. Individual samples represent a composite of 7 to 23 yr of deposition and are assumed to record the relative dominance of the winter vs. summer floral components. Intervals of enhanced summer incursion of tropical waters, alternating with periods of increased late fall to early spring biosiliceous productivity are recorded in all three cores. Regularly spaced cycles (∼ 100 yr duration) of Octactis pulchra, a silicoflagellate proxy for lower SST and high productivity, and Azpeitia nodulifera, a tropical diatom, occur between ∼ A.D. 400 and ∼ 1700 in the more nearshore Carmen Basin core, NH01-21 (26.3° N), suggesting a possible solar influence on coastal upwelling. Cores BAM80 E-17 (27.9° N) and NH01-26 (24.3° N) contain longer-duration cycles of diatoms and silicoflagellates. The early part of Medieval Climate Anomaly (∼ A.D. 900 to 1200) is characterized by two periods of reduced productivity (warmer SST) with an intervening high productivity (cool) interval centered at ∼ A.D. 1050. Reduced productivity and higher SST also characterize the record of the last ∼ 100 to 200 yr in these cores. Solar variability appears to be driving productivity cycles, as intervals of increased radiocarbon production (sunspot minima) correlate with intervals of enhanced productivity. It is proposed that increased winter cooling of the atmosphere above southwest U.S. during sunspot minima causes intensification of the northwest winds that blow down the Gulf during the late fall to early spring, leading to intensified overturn of surface waters and enhanced productivity. A new silicoflagellate species, Dictyocha franshepardii Bukry, is described and illustrated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sedimentological and benthic foraminifera analyses carried out on a core (length 4.15 in, collected at 22 degrees 56`31 `` S and 41 degrees 58`48 `` W, at a water depth of 43 in) sampled from the inner shelf of Cabo Frio, southeastern Brazilian continental margin, allowed identification of different hydrodynamic and productivity regimes related to sea-level fluctuations and/or climatic changes, during the last 9.4 ka cal BP. Prior to 7.0 ka cal BP, a less intense hydrodynamic and lower productivity regime occurred at lower sea levels and under drier climatic conditions. Between 7.0 and 5.0 ka cal BP, relatively stronger local oceanic circulation and relatively high productivity were observed, in a scenario of rising sea levels and more humid conditions. From 5.0 to 3.0 ka cal BP, bottom currents weakened and input of nutrients increased, with productivity levels similar to the previous phase at lower sea level and in a drier climate. From 3.0 ka cal BP up to the present, stronger hydrodynamic conditions and a higher productivity regime are linked to the establishment of the upwelling process in Cabo Frio. From 2.5 ka cal BP to the present, upwelling enhancement has been recognized, resulting from the combined action of NE winds and the intensification of the meandering pattern of the Brazil Current (BC). (C) 2008 Elsevier Ltd and INQUA. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: The objective of this research was to study the influence of the use of helmet in facial trauma victims of motorcycle accidents with moderate traumatic brain injury. Methods: We retrospectively reviewed the incidence of facial injuries in helmeted and nonhelmeted victims with moderate traumatic brain injury at a referral trauma hospital. Results: The sample consisted of 272 patients predominantly men (94.5%) and between 21 and 40 years old (62.9%). The majority of patients were using helmet (80.1%). The occurrence of facial fractures was most frequent for zygomatic bone (51.8%), followed by mandible (18.8%) and nasal bones (9.2%). Conclusions: Individuals in the most productive age group are most affected, which causes a great loss to financial and labor systems. It is important to take measures to alert the public regarding the severity of injuries likely to occur in motorcycle-related accidents and ways to prevent them.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The service sector has acquired a growing importance in every country economy, which has stimulated research in the field of service innovation, a new field in management studies. This text aimed to state a research agenda upon service innovation, based on an articulated discussion of the results of several articles that compose the state of the art of this concept. 73 empirical articles were analyzed, 33% of them exploring the innovation strategies and technology; 18% of the articles describe research on economic performance and enterprise productivity; 16% are related to antecedents and determinants of innovation; another 16% about network capacity development, alliances and collaboration among organizations; 9% of the articles explore service quality, innovation taxonomy, flexible systems and regional systems of innovation; and another 8% are related to themes such as intensive knowledge, research and development. The researches were concentrated in the Engineering & Technology and Hospitality Industries, which accounted for 31% and 24% of the texts, respectively. The remaining 45% of the articles referred to sectors such as Telecommunications, Health, Retail, Financial & Insurance and Public Services. The main gaps identified in these texts refer to the difficulties on measuring service innovation, besides the small number of researches on the public sector. At the end, a research agenda in the subject is presented, including the development of a scale for orientating the innovation and identifying the determining factors of the innovation in the public environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sinking particles through the pelagic ocean have been traditionally considered the most important vehicle by which the biological pump sequesters carbon in the ocean interior. Nevertheless, regional scale variability in particle flux is a major outstanding issue in oceanography. 5 Here, we have studied the regional and temporal variability of total particulate organic matter fluxes, as well as chloropigment and total hydrolyzed amino acid (THAA) compositions and fluxes in the Canary Current region, between 20–30 N, during two contrasting periods: August 2006, characterized by warm and stratified waters, but also intense winds which enhanced eddy development south of the Canary Islands, 10 and February 2007, characterized by colder waters, less stratification and higher productivity. We found that the eddy-field generated south of the Canary Islands enhanced by >2 times particulate organic carbon (POC) export with respect to stations (FF; farfield) outside the eddy-field influence. We also observed flux increases of one order of magnitude in chloropigment and 70% in THAA in the eddy-field relative to FF stations. 15 Principal Components Analysis (PCA) was performed to assess changes in particulate organic matter composition between stations. At eddy-field stations, higher chlorophyll enrichment reflected “fresher” material, while at FF stations a higher proportion of pheophytin indicated greater degradation due to microbes and microzooplankton. PCA also suggests that phytoplankton community structure, particularly the dominance of 20 diatoms versus carbonate-rich plankton, is the major factor influencing the POC export within the eddy field. In February, POC export fluxes were the highest ever reported for this area, reaching values of 15 mmolCm−2 d−1 at 200m depth. Compositional changes in pigments and THAA indicate that the source of sinking particles varies zonally and meridionally and suggest that sinking particles were more degraded at 25 near-coastal stations relative to open ocean stations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN] Sinking particles through the pelagic ocean have been traditionally considered the most important vehicle by which the biological pump sequesters carbon in the ocean interior. Nevertheless, regional scale variability in particle flux is a major outstanding issue in oceanography. Here, we have studied the regional and temporal variability of total particulate organic matter fluxes, as well as chloropigment and total hydrolyzed amino acid (THAA) compositions and fluxes in the Canary Current region, between 20?30_ N, during two contrasting periods: August 2006, characterized by warm and stratified waters, but also intense winds which enhanced eddy development south of the Canary Islands, and February 2007, characterized by colder waters, less stratification and higher productivity. We found that the eddyfield generated south of the Canary Islands enhanced by >2 times particulate organic carbon (POC) export with respect to stations (FF; far-field) outside the eddy-field influence. We also observed flux increases of one order of magnitude in chloropigment and 2 times in THAA in the eddy-field relative to FF stations. Principal Components Analysis (PCA) was performed to assess changes in particulate organic matter composition between stations. At eddy-field stations, higher chlorophyll enrichment reflected ?fresher? material, while at FF stations a higher proportion of pheophytin indicated greater degradation due to microbes and microzooplankton. PCA also suggests that phytoplankton community structure, particularly the dominance of diatoms versus carbonate-rich plankton, is the major factor influencing the POC export within the eddy field. In February, POC export POC export within the eddy field. In February, POC export fluxes were the highest ever reported for this area, reaching values of _15 mmolCm?2 d?1 at 200m depth. Compositional changes in pigments and THAA indicate that the source of sinking particles varies zonally and meridionally and suggest that sinking particles were more degraded at near-coastal stations relative to open ocean stations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relation between the intercepted light and orchard productivity was considered linear, although this dependence seems to be more subordinate to planting system rather than light intensity. At whole plant level not always the increase of irradiance determines productivity improvement. One of the reasons can be the plant intrinsic un-efficiency in using energy. Generally in full light only the 5 – 10% of the total incoming energy is allocated to net photosynthesis. Therefore preserving or improving this efficiency becomes pivotal for scientist and fruit growers. Even tough a conspicuous energy amount is reflected or transmitted, plants can not avoid to absorb photons in excess. The chlorophyll over-excitation promotes the reactive species production increasing the photoinhibition risks. The dangerous consequences of photoinhibition forced plants to evolve a complex and multilevel machine able to dissipate the energy excess quenching heat (Non Photochemical Quenching), moving electrons (water-water cycle , cyclic transport around PSI, glutathione-ascorbate cycle and photorespiration) and scavenging the generated reactive species. The price plants must pay for this equipment is the use of CO2 and reducing power with a consequent decrease of the photosynthetic efficiency, both because some photons are not used for carboxylation and an effective CO2 and reducing power loss occurs. Net photosynthesis increases with light until the saturation point, additional PPFD doesn’t improve carboxylation but it rises the efficiency of the alternative pathways in energy dissipation but also ROS production and photoinhibition risks. The wide photo-protective apparatus, although is not able to cope with the excessive incoming energy, therefore photodamage occurs. Each event increasing the photon pressure and/or decreasing the efficiency of the described photo-protective mechanisms (i.e. thermal stress, water and nutritional deficiency) can emphasize the photoinhibition. Likely in nature a small amount of not damaged photosystems is found because of the effective, efficient and energy consuming recovery system. Since the damaged PSII is quickly repaired with energy expense, it would be interesting to investigate how much PSII recovery costs to plant productivity. This PhD. dissertation purposes to improve the knowledge about the several strategies accomplished for managing the incoming energy and the light excess implication on photo-damage in peach. The thesis is organized in three scientific units. In the first section a new rapid, non-intrusive, whole tissue and universal technique for functional PSII determination was implemented and validated on different kinds of plants as C3 and C4 species, woody and herbaceous plants, wild type and Chlorophyll b-less mutant and monocot and dicot plants. In the second unit, using a “singular” experimental orchard named “Asymmetric orchard”, the relation between light environment and photosynthetic performance, water use and photoinhibition was investigated in peach at whole plant level, furthermore the effect of photon pressure variation on energy management was considered on single leaf. In the third section the quenching analysis method suggested by Kornyeyev and Hendrickson (2007) was validate on peach. Afterwards it was applied in the field where the influence of moderate light and water reduction on peach photosynthetic performances, water requirements, energy management and photoinhibition was studied. Using solar energy as fuel for life plant is intrinsically suicidal since the high constant photodamage risk. This dissertation would try to highlight the complex relation existing between plant, in particular peach, and light analysing the principal strategies plants developed to manage the incoming light for deriving the maximal benefits as possible minimizing the risks. In the first instance the new method proposed for functional PSII determination based on P700 redox kinetics seems to be a valid, non intrusive, universal and field-applicable technique, even because it is able to measure in deep the whole leaf tissue rather than the first leaf layers as fluorescence. Fluorescence Fv/Fm parameter gives a good estimate of functional PSII but only when data obtained by ad-axial and ab-axial leaf surface are averaged. In addition to this method the energy quenching analysis proposed by Kornyeyev and Hendrickson (2007), combined with the photosynthesis model proposed by von Caemmerer (2000) is a forceful tool to analyse and study, even in the field, the relation between plant and environmental factors such as water, temperature but first of all light. “Asymmetric” training system is a good way to study light energy, photosynthetic performance and water use relations in the field. At whole plant level net carboxylation increases with PPFD reaching a saturating point. Light excess rather than improve photosynthesis may emphasize water and thermal stress leading to stomatal limitation. Furthermore too much light does not promote net carboxylation improvement but PSII damage, in fact in the most light exposed plants about 50-60% of the total PSII is inactivated. At single leaf level, net carboxylation increases till saturation point (1000 – 1200 μmolm-2s-1) and light excess is dissipated by non photochemical quenching and non net carboxylative transports. The latter follows a quite similar pattern of Pn/PPFD curve reaching the saturation point at almost the same photon flux density. At middle-low irradiance NPQ seems to be lumen pH limited because the incoming photon pressure is not enough to generate the optimum lumen pH for violaxanthin de-epoxidase (VDE) full activation. Peach leaves try to cope with the light excess increasing the non net carboxylative transports. While PPFD rises the xanthophyll cycle is more and more activated and the rate of non net carboxylative transports is reduced. Some of these alternative transports, such as the water-water cycle, the cyclic transport around the PSI and the glutathione-ascorbate cycle are able to generate additional H+ in lumen in order to support the VDE activation when light can be limiting. Moreover the alternative transports seems to be involved as an important dissipative way when high temperature and sub-optimal conductance emphasize the photoinhibition risks. In peach, a moderate water and light reduction does not determine net carboxylation decrease but, diminishing the incoming light and the environmental evapo-transpiration request, stomatal conductance decreases, improving water use efficiency. Therefore lowering light intensity till not limiting levels, water could be saved not compromising net photosynthesis. The quenching analysis is able to partition absorbed energy in the several utilization, photoprotection and photo-oxidation pathways. When recovery is permitted only few PSII remained un-repaired, although more net PSII damage is recorded in plants placed in full light. Even in this experiment, in over saturating light the main dissipation pathway is the non photochemical quenching; at middle-low irradiance it seems to be pH limited and other transports, such as photorespiration and alternative transports, are used to support photoprotection and to contribute for creating the optimal trans-thylakoidal ΔpH for violaxanthin de-epoxidase. These alternative pathways become the main quenching mechanisms at very low light environment. Another aspect pointed out by this study is the role of NPQ as dissipative pathway when conductance becomes severely limiting. The evidence that in nature a small amount of damaged PSII is seen indicates the presence of an effective and efficient recovery mechanism that masks the real photodamage occurring during the day. At single leaf level, when repair is not allowed leaves in full light are two fold more photoinhibited than the shaded ones. Therefore light in excess of the photosynthetic optima does not promote net carboxylation but increases water loss and PSII damage. The more is photoinhibition the more must be the photosystems to be repaired and consequently the energy and dry matter to allocate in this essential activity. Since above the saturation point net photosynthesis is constant while photoinhibition increases it would be interesting to investigate how photodamage costs in terms of tree productivity. An other aspect of pivotal importance to be further widened is the combined influence of light and other environmental parameters, like water status, temperature and nutrition on peach light, water and phtosyntate management.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bivalve mollusk shells are useful tools for multi-species and multi-proxy paleoenvironmental reconstructions with a high temporal and spatial resolution. Past environmental conditions can be reconstructed from shell growth and stable oxygen and carbon isotope ratios, which present an archive for temperature, freshwater fluxes and primary productivity. The purpose of this thesis is the reconstruction of Holocene climate and environmental variations in the North Pacific with a high spatial and temporal resolution using marine bivalve shells. This thesis focuses on several different Holocene time periods and multiple regions in the North Pacific, including: Japan, Alaska (AK), British Columbia (BC) and Washington State, which are affected by the monsoon, Pacific Decadal Oscillation (PDO) and El Niño/Southern Oscillation (ENSO). Such high-resolution proxy data from the marine realm of mid- and high-latitudes are still rare. Therefore, this study contributes to the optimization and verification of climate models. However, before using bivalves for environmental reconstructions and seasonality studies, life history traits must be well studied to temporally align and interpret the geochemical record. These calibration studies are essential to ascertain the usefulness of selected bivalve species as paleoclimate proxy archives. This work focuses on two bivalve species, the short-lived Saxidomus gigantea and the long-lived Panopea abrupta. Sclerochronology and oxygen isotope ratios of different shell layers of P. abrupta were studied in order to test the reliability of this species as a climate archive. The annual increments are clearly discernable in umbonal shell portions and the increments widths should be measured in these shell portions. A reliable reconstruction of paleotemperatures may only be achieved by exclusively sampling the outer shell layer of multiple contemporaneous specimens. Life history traits (e.g., timing of growth line formation, duration of the growing season and growth rates) and stable isotope ratios of recent S. gigantea from AK and BC were analyzed in detail. Furthermore, a growth-temperature model based on S. gigantea shells from Alaska was established, which provides a better understanding of the hydrological changes related to the Alaska Coastal Current (ACC). This approach allows the independent measurement of water temperature and salinity from variations in the width of lunar daily growth increments of S. gigantea. Temperature explains 70% of the variability in shell growth. The model was calibrated and tested with modern shells and then applied to archaeological specimens. The time period between 988 and 1447 cal yrs BP was characterized by colder (~1-2°C) and much drier (2-5 PSU) summers, and a likely much slower flowing ACC than at present. In contrast, the summers during the time interval of 599-1014 cal yrs BP were colder (up to 3°C) and fresher (1-2 PSU) than today. The Aleutian Low may have been stronger and the ACC was probably flowing faster during this time.