944 resultados para WET CHEMICAL-SYNTHESIS
Resumo:
Peroxydisulfuric acid oxidation of testosterone propionate, progesterone, and cholest-4-en-3-one has been shown to yield 3-oxo-17β-hydroxy-4-oxa-5α-androstane (I, after saponification), 3,20-dioxo-4-oxa-5α-pregnane (V) and 3-oxo-4-oxa-5α-cholestane (VII) respectively. Boron trifluoride etherate-lithium aluminum hydride reduction of δ-lactones I, V, and VII led to the corresponding tetrahydropyran derivatives (IIb, VIa, and VIII). Similar reduction of 3β-hydroxy-17-oxo-17a-oxa-D-homo-5α-androstane (XI) gave 3β-hydroxy-17a-oxa-D-homo-5α-androstane (XIIa). Diborane-boron trifluoride etherate was also found to reduce lactones to cyclic ethers, while reduction with diborane gave hemiacetals. Evidence in support of the structures and stereochemistry assigned to the lactones and their unusual reduction products has been summarized. A tentative mechanism is proposed for lactone → ether reduction employing diborane-boron trifluoride etherate.
Resumo:
Cyclohexanone and 2-, 3- and 4-methylcyclohexanones have been condensed with acetylene to give the respective 1-ethinylcyclohexanola. The 1-ethinylcyclohexanols were hydrogenated to the respective 1-vinyl- and 1-ethylcyclohexanols. The 1-vinylcyclohexanols have been treated with phosphorus tribromide to give the corresponding rearranged β-cyclohexylidenethyl bromides which have been converted to the pyridinium salts. The latter were treated with p-nitrosodimethylaniline and alkali (Krohnke's method) to give the corresponding nitrones which were hydrolyzed to the corresponding aldehydes. The 1-ethinyl-, 1-vinyl- and 1-ethylcyclohexanols prepared were subjected to pharmacological tests.
Resumo:
Synthesis, aggregation behavior and in vitro cholesterol solubilization studies of 16-epi-pythocholic acid (3 alpha,12 alpha,16 beta-trihydroxy-5 beta-cholan-24-oic acid, EPCA) are reported. The synthesis of this unnatural epimer of pythocholic acid (3 alpha,12 alpha,16 alpha-trihydroxy-5 beta-cholan-24-oic acid, PCA) involves a series of simple and selective chemical transformations with an overall yield of 21% starting from readily available cholic acid (CA). The critical micellar concentration (CMC) of 16-epi-pythocholate in aqueous media was determined using pyrene as a fluorescent probe. In vitro cholesterol solubilization ability was evaluated using anhydrous cholesterol and results were compared with those of other natural di-and trihydroxy bile acids. These studies showed that 16-epi-pythocholic acid (16 beta-hydroxy-deoxycholic acid) behaves similar to cholic acid (CA) and avicholic acid (3 alpha,7 alpha,16 alpha-trihydroxy-5 beta-cholan-24-oic acid, ACA) in its aggregation behavior and cholesterol dissolution properties. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Benzothiazoles are multitarget agents with broad spectrum of biological activity. Among the antitumor agents discovered in recent years, the identification of various 2-(4-aminophenyl) benzothiazoles as potent and selective antitumor drugs against different cancer cell lines has stimulated remarkable interest. Some of the benzothiazoles are known to induce cell cycle arrest, activation of caspases and interaction with DNA molecule. Based on these interesting properties of benzothiazoles and to obtain new biologically active agents, a series of novel 4,5,6,7-tetrahydrobenzo[d]thiazole derivatives 5(a-i) were synthesized and evaluated for their efficacy as antileukemic agents in human leukemia cells (K562 and Reh). The chemical structures of the synthesized compounds were confirmed by H-1 NMR, LCMS and IR analysis. The cytotoxicity of these compounds were determined using trypan blue exclusion, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays. Results showed that, these compounds mediate a significant cytotoxic response to cancer cell lines tested. We found that the compounds having electron withdrawing groups at different positions of the phenyl ring of the thiourea moiety displayed significant cytotoxic effect with IC50 value less than 60 mu M. To rationalize the role of electron withdrawing group in the induction of cytotoxicity, we have chosen molecule 5g (IC50 similar to 15 mu M) which is having chloro substitution at ortho and para positions. Flow cytometric analysis of annexin V-FITC/ propidium iodide (PI) double staining and DNA fragmentation suggest that 5g can induce apoptosis.
Resumo:
Biodiesel was synthesized in supercritical fluids by two routes: non-catalytically in supercritical alcohols and by enzyme catalysis in supercritical carbon dioxide. Two oils, sesame oil and mustard oil, and two alcohols, methanol and ethanol, were used for the synthesis. Complete conversion was observed for synthesis in supercritical alcohols whereas only a maximum of 70% conversion was observed for the enzymatic synthesis in supercritical carbon dioxide. For the synthesis in supercritical alcohols, the activation energies and pseudo-first order rate constants were determined. For the reactions in supercritical carbon dioxide, a mechanism based on ping pong bi-bi was proposed and the kinetic parameters were determined. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Five new thiosulfate based inorganic-organic hybrid open-framework compounds have been synthesized employing mild reaction conditions. Of the five compounds, [Na-2(H2O)(8)][Cd(C10H8N2)( S2O3)(2)]center dot 2H(2)O, I and [Cd-2(C10H8N2)(2)(HS2O3)(2)(S2O3)(2)][(C10H9N2)(2)(C10H8N2)(2)]center dot 8H(2)O, II have one-dimensional (1D) structures and [Cd(C10H8N2)(H2O)(2)(S2O3)]center dot 2H(2)O, III, [Cd-2(C10H8N2)(3)(S2O3)(2)], IV and [Cd-2(C10H8N2)(2.5)(S2O3)(2)], V have three- dimensional (3D) structures. The 1D structures are somewhat related, formed by the bonding between tetrahedral Cd centers (CdN2S2) and 4,4'-bipyridine (bpy) units. The inter-chain spaces are occupied by the hanging thiosulfate units in both the cases along with Na(H2O)(6) chains in I and free bpy units in II. The three 3D structures have one-dimensional cadmium thiosulfate chains linked by bpy units. Interpenetration has been observed in all the 3D structures. The 3D structures appear to be related and can be derived from fgs net. Transformation studies on the 1D compound, [Na-2(H2O)(8)][Cd(C10H8N2)(S2O3)(2)]center dot 2H(2)O, I, indicated a facile formation of [Cd(C10H8N2)(H2O)(2)(S2O3)]center dot 2H(2)O, III. Prolonged heating of I gave rise to a 3D cadmium sulfate phase, [Cd-2(C10H8N2)(2)(H2O)(3)(SO4)(2)]center dot 2H(2)O, VI. Compound VI has one-dimensional cadmium sulfate chains formed by six-membered rings connected by bpy units to form a 3D structure, which appears to resemble the topological arrangement of III. Transformation studies of III indicates the formation of IV and V, and at a higher temperature a new 3D cadmium sulfate, [Cd(C10H8N2)(SO4)], VII. Compound VII has a 4 x 4 grid cadmium sulfate layers pillared by bpy units. All the compounds were characterized by PXRD, TGA, IR and UV-visible studies. Preliminary studies on the possible use of the 3D compounds (III-VII) in heterogeneous cyanosilylation of imines appear to be promising.
Resumo:
The transesterification of methyl salicylate with phenol has been studied in vapour phase over solid acid catalysts such as ZrO2, MoO3 and SO42- or Mo(VI) ions modified zirconia. The catalytic materials were prepared and characterized for their total surface acidity, BET surface area and powder XRD patterns. The effect of mole-ratio of the reactants, catalyst bed temperature, catalyst weight, flow-rate of reactants, WHSV and time-on-stream on the conversion (%) of phenol and selectivity (%) of salol has been investigated. A good yield (up to 70%) of salol with 90% selectivity was observed when the reactions were carried out at a catalyst bed temperature of 200 degrees C and flow-rate of 10 mL/h in presence of Mo(VI)/ZrO2 as catalyst. The results have been interpreted based on the variation of acidic properties and powder XRD phases of zirconia on incorporation of SO42- or Mo(VI) ions. The effect of poisoning of acid sites of SO42- or Mo(VI) ions modified zirconia on total surface acidity, powder XRD phases and catalytic activity was also studied. Possible reaction mechanisms for the formation of salol and diphenyl ether over acid sites are proposed.
Resumo:
Copper(II) hydrazine carboxylate monohydrate, Cu(N2H3COO)2·H2O and chromium (II, III) hydrazine carboxylate hydrates, Cu(N2H3COO)2·H2O and Cu(N2H3COO)2·3H2O have been prepared and characterised by chemical analysis, IR, visible spectra and magnetic measurements. Thermal analysis of the copper complex yields a mixture of copper metal and copper oxide. Chromium complexes on thermal decomposition yield Cr2O3 as residue. Decomposition of chromium(HI) complex under hydrothermal conditions yield CrOOH, a precursor to CrO2.
Resumo:
A one pot synthesis of 6-alkylsalicylates and 6-alkyl-2,4- dihydroxybenzoates is described. Cycloaddition of 1-methoxycyclohexa-1,4- or 1,3-dienes with alkylpropiolic esters results in the regio-specific formation of 2-alkyl-6-methoxybenzoates. Thus, methyl 2-methoxy-6-methyl benzoate, methyl 2,4-dimethoxy-6-methylbenzoate, methyl 2,5-dimethoxy-6-methylbenzoate, methyl 2-methoxy-4,6-dimethylbenzoate, and ethyl 2-butyl-4,6-dimethoxybenzoate, have been prepared. By making use of this method, the synthesis of two dihydroisocoumarins namely (±)-mellein (12) and (±)-6-methoxy- mellein (14) is described. Employing a similar strategy, a novel route to 2,5-dialkylresorcinols has been developed. Stemphol (24b) and the antibiotic DB2073 (24d) have been synthesized.
Resumo:
By carrying out the reaction of appropriate metal compounds with Na2S in the presence of a tripodal cholamide-based hydrogel, nanotubes and nanorods of CdS, ZnS and CuS have been obtained. The nanostructures have been characterized by transmission electron microscopy and spectroscopic techniques. Evidence is presented for the assembly of short nanorods to form one-dimensional chains.
Resumo:
An organically templated iron(II) sulfate of the composition [H3N(CH2)2NH2(CH2)2(NH3]4[FeII 9F18(SO4)6]â9H2O with a distorted Kagome structure has been synthesized under solvothermal conditions in the presence of diethylenetriamine. The distortion of the hexagonal bronze structure comes from the presence of two different types of connectivity between the FeF4O2 octahedra and the sulfate tetrahedra. This compound exhibits magnetic properties different from those of an Fe(II) compound with a perfect Kagome structure and is a canted antiferromagnet at low temperatures.
Resumo:
Polymeric peroxides have received renewed attention in the recent past, in view of some significant explorations of their physical and chemical properties. The potential of polymeric peroxides as a class, as specialized fuel, and the need to synthesize such new materials have been reported in the literature. So far, this class of polymers is constituted only by a dozen or so polyperoxides. From the point of view of their use in propellant applications, the importance lies in making materials which are easy to handle etc., unlike the earlier reported poly(styrene peroxide) (PSP), a sticky semi-solid mass. However, judging from the better combustion characteristics, exploring aromatic monomers was thought worthwhile. In this preliminary communication, the synthesis of a new polymeric peroxide made from 1,4-divinylbenzene is reported. The polymer obtained was in powder form and had an exothermic heat of degradation approximately equal to that of PSP. 4 ref.--AA
Resumo:
Heterocyclic urea derivatives play an important role as anticancer agents because of their good inhibitory activity against receptor tyrosine kinases (RTKs), raf kinases, protein tyrosine kinases (PTKs), and NADH oxidase, which play critical roles in many aspects of tumorigenesis. Benzothiazole moiety constitutes an important scaffold of drugs, possessing several pharmacological functions, mainly the anticancer activity. Based on these interesting properties of benzothiazoles and urea moiety to obtain new biologically active agents, we synthesized a series of novel 1-((S)-2-amino-4,5,6.7-tetrahydrobenzo[d]thiazol-6-yl)-3-(substituted phenyl)urea derivatives and evaluated for their efficacy as antileukemic agents against two human leukemic cell lines (K562 and Reh). These compounds showed good and moderate cytotoxic effect to cancer cell lines tested. Compounds with electron-withdrawing chloro and fluoro substituents on phenyl ring showed good activity and compounds with electron-donating methoxy group showed moderate activity. Compound with electron-withdrawing dichloro substitution on phenyl ring of aryl urea showed good activity. Further, lactate dehydrogenase (LDH) assay, flow cytometric analysis of annexin V-FITC/propidium iodide (PI) double staining and DNA fragmentation studies showed that compound with dichloro substitution on phenyl ring of aryl urea can induce apoptosis.
Resumo:
Investigations were carried out to determine the role of juvenile hormone (JH) and 20-hydroxy ecdysone in the synthesis and uptake of vitellogenins, which were earlier identified, purified and characterised, in Dysdercus koenigii. The concentration(s) of vitellogenin(s) in fat body, haemolymph and that of vitellin(s) in ovary were significantly lower after chemical allatectomy at eclosion. In addition, at 70 h after emergence, chemical allatectomy reduced ovarian vitellin concentration, but vitellogenin levels remained normal in the fat body and haemolymph. The haemolymph vitellogenins were not incorporated into oocytes in such insects. Administration of JH-III at 20 h after allatectomy restored vitellogenin levels in the fat body and haemolymph, but the ovary failed to incorporate the available vitellogenins from haemolymph in such insects. However, when JH-III was administered twice, one at 20 h and then at 70 h after allatectomy, vitellogenin concentrations in fat body and haemolymph and also vitellin concentrations in ovary approached control levels. It is suggested that JH has two separate roles, one in vitellogenin synthesis and the other in uptake. 20-hydroxy ecdysone had no apparent role in either vitellogenin synthesis or uptake in D. koenigii. (C) 2000 Elsevier Science Inc. All rights reserved.
Resumo:
Our finding that the inhibitors of DNA methylation, 5-azacytidine, 5-azadeoxycytidine or adenosine dialdehyde, given after a carcinogen all potentiated initiation suggested that hypomethylation of DNA during repair synthesis of DNA might play a role in the initiation of the carcinogenic process. To examine this aspect further, we have asked the question, do the nodules which develop from initiated cells after promotion with 1% orotic acid exhibit an altered methylation pattern in their DNA? The methylation status of the DNA from nodules has been examined using the restriction endonucleases HpaII/MspI and HhaI which distinguish between methylated and unmethylated cytosines in their nucleotide recognition DNA 5'-CCGG and 5'-GCGC respectively. The proto-oncogenes, c-myc, c-fos and c-Ha-ras, in the DNA were primarily studied in this investigation because of their possible involvement in cell proliferation and/or in cell transformation and tumorigenesis. The results indicate that in the nodule DNA, c-myc and c-fos are hypomethylated in the sequence of CCGG while the c-Ha-ras shows hypomethylation in the alternating GCGC sequence. This methylation pattern seen in the nodule DNA is not found in the DNA of the non-nodular surrounding liver or liver tissue after exposure to promoter or carcinogen alone. It is also not found in the DNA of regenerating liver. It is particularly significant that the methylation patterns in the c-myc and c-Ha-ras regions are similar to those found in several cancer tissues. The results suggest that this methylation pattern is acquired early in the carcinogenic process and raises the question whether it has any bearing on the process.