991 resultados para Virus Internalization


Relevância:

20.00% 20.00%

Publicador:

Resumo:

UNLABELLED: Influenza A viruses counteract the cellular innate immune response at several steps, including blocking RIG I-dependent activation of interferon (IFN) transcription, interferon (IFN)-dependent upregulation of IFN-stimulated genes (ISGs), and the activity of various ISG products; the multifunctional NS1 protein is responsible for most of these activities. To determine the importance of other viral genes in the interplay between the virus and the host IFN response, we characterized populations and selected mutants of wild-type viruses selected by passage through non-IFN-responsive cells. We reasoned that, by allowing replication to occur in the absence of the selection pressure exerted by IFN, the virus could mutate at positions that would normally be restricted and could thus find new optimal sequence solutions. Deep sequencing of selected virus populations and individual virus mutants indicated that nonsynonymous mutations occurred at many phylogenetically conserved positions in nearly all virus genes. Most individual mutants selected for further characterization induced IFN and ISGs and were unable to counteract the effects of exogenous IFN, yet only one contained a mutation in NS1. The relevance of these mutations for the virus phenotype was verified by reverse genetics. Of note, several virus mutants expressing intact NS1 proteins exhibited alterations in the M1/M2 proteins and accumulated large amounts of deleted genomic RNAs but nonetheless replicated to high titers. This suggests that the overproduction of IFN inducers by these viruses can override NS1-mediated IFN modulation. Altogether, the results suggest that influenza viruses replicating in IFN-competent cells have tuned their complete genomes to evade the cellular innate immune system and that serial replication in non-IFN-responsive cells allows the virus to relax from these constraints and find a new genome consensus within its sequence space.

IMPORTANCE: In natural virus infections, the production of interferons leads to an antiviral state in cells that effectively limits virus replication. The interferon response places considerable selection pressure on viruses, and they have evolved a variety of ways to evade it. Although the influenza virus NS1 protein is a powerful interferon antagonist, the contributions of other viral genes to interferon evasion have not been well characterized. Here, we examined the effects of alleviating the selection pressure exerted by interferon by serially passaging influenza viruses in cells unable to respond to interferon. Viruses that grew to high titers had mutations at many normally conserved positions in nearly all genes and were not restricted to the NS1 gene. Our results demonstrate that influenza viruses have fine-tuned their entire genomes to evade the interferon response, and by removing interferon-mediated constraints, viruses can mutate at genome positions normally restricted by the interferon response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

How incretins regulate presence of their receptors at the cell surface and their activity is of paramount importance for the development of therapeutic strategies targeting these receptors. We have studied internalization of the human Glucose-Insulinotropic Polypeptide receptor (GIPR). GIP stimulated rapid robust internalization of the GIPR, the major part being directed to lysosomes. GIPR internalization involved mainly clathrin-coated pits, AP-2 and dynamin. However, neither GIPR C-terminal region nor β-arrestin1/2 was required. Finally, N-acetyl-GIP recognized as a dipeptidyl-IV resistant analogue, fully stimulated cAMP production with a ∼15-fold lower potency than GIP and weakly stimulated GIPR internalization and desensitization of cAMP response. Furthermore, docking N-acetyl-GIP in the binding site of modelled GIPR showed slighter interactions with residues of helices 6 and 7 of GIPR compared to GIP. Therefore, incomplete or partial activity of N-acetyl-GIP on signaling involved in GIPR desensitization and internalization contributes to the enhanced incretin activity of this peptide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Invasive species have been cited as major causes of population extinctions in several animal and plant classes worldwide. The North American grey squirrel (Sciurus carolinensis) has a major detrimental effect on native red squirrel (Sciurus vulgaris) populations across Britain and Ireland, in part because it can be a reservoir host for the deadly squirrelpox virus (SQPV). Whilst various researchers have investigated the epizootiology of SQPV disease in grey squirrels and have modelled the consequent effects on red squirrel populations, less work has examined morphological and physiological characteristics that might make individual grey squirrels more susceptible to contracting SQPV. The current study investigated the putative relationships between morphology, parasitism, and SQPV exposure in grey squirrels. We found geographical, sex, and morphological differences in SQPV seroprevalence. In particular, larger animals, those with wide zygomatic arch widths (ZAW), males with large testes, and individuals with concurrent nematode and/or coccidial infections had an increased seroprevalence of SQPV. In addition, males with larger spleens, particularly those with narrow ZAW, were more likely to be exposed to SQPV. Overall these results show that there is variation in SQPV seroprevalence in grey squirrels and that, consequently, certain individual, or populations of, grey squirrels might be more responsible for transmitting SQPV to native red squirrel populations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human T lymphotrophic virus type 1 (HTLV-I) associated leukaemia has a poor prognosis even with chemotherapy. We describe a patient with adult T-cell leukaemia treated with allogeneic bone marrow transplantation from an HTLV-I negative identical sibling donor. During follow-up after bone marrow transplantation, HTLV-I could be repeatedly isolated inspite of anti-viral prophylaxis. The patient died of an acute encephalitis and HTLV-I could be detected in autopsy material from the brain. By a PCR-based technique using short tandem repeats (STRs) it was shown that the patient's haemopoiesis was of donor origin. This shows the infection of donor cells in vivo by an aetiological agent which has been implicated in the leukaemogenic process for adult T-cell leukaemia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Autophagic flux involves formation of autophagosomes and their degradation by lysosomes. Autophagy can either promote or restrict viral replication. In the case of Dengue virus (DENV) several studies report that autophagy supports the viral replication cycle, and describe an increase of autophagic vesicles (AVs) following infection. However, it is unknown how autophagic flux is altered to result in increased AVs. To address this question, and gain insight into the role of autophagy during DENV infection, we established an unbiased, image-based flow cytometry approach to quantify autophagic flux under normal growth conditions and in response to activation by nutrient deprivation or the mTOR inhibitor Torin1. We found that DENV induced an initial activation of autophagic flux, followed by inhibition of general and specific autophagy. Early after infection, basal and activated autophagic flux was enhanced. However, during established replication, basal and Torin1-activated autophagic flux was blocked, while autophagic flux activated by nutrient deprivation was reduced, indicating a block to AV formation and reduced AV degradation capacity. During late infection AV levels increased as a result of inefficient fusion of autophagosomes with lysosomes. Additionally, endo-lysosomal trafficking was suppressed, while lysosomal activities were increased. We further determined that DENV infection progressively reduced levels of the autophagy receptor SQSTM1/p62 via proteasomal degradation. Importantly, stable over-expression of p62 significantly suppressed DENV replication suggesting a novel role for p62 as viral restriction factor. Overall our findings indicate that in the course of DENV infection, autophagy shifts from a supporting to an anti-viral role, which is countered by DENV.

IMPORTANCE: Autophagic flux is a dynamic process starting with the formation of autophagosomes and ending with their degradation after fusion with lysosomes. Autophagy impacts the replication cycle of many viruses. However, thus far the dynamics of autophagy in case of Dengue virus (DENV) infections has not been systematically quantified. Therefore, we employed high-content, imaging-based flow cytometry to quantify autophagic flux and endo-lysosomal trafficking in response to DENV infection. We report that DENV induced an initial activation of autophagic flux, followed by inhibition of general and specific autophagy. Further, lysosomal activity was increased, but endo-lysosomal trafficking was suppressed confirming the block of autophagic flux. Importantly, we provide evidence that p62, an autophagy receptor, restrict DENV replication and was specifically depleted in DENV-infected cells via increased proteasomal degradation. These results suggest that during DENV infection autophagy shifts from a pro- to an antiviral cellular process, which is counteracted by the virus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Airway epithelium is the primary target of many respiratory viruses. However, virus induction and antagonism of host responses by human airway epithelium remains poorly understood. To address this, we developed a model of respiratory syncytial virus (RSV) infection based on well- differentiated pediatric primary bronchial epithelial cell cultures (WD-PBECs) that mimics hallmarks of RSV disease in infants. RSV is the most important respiratory viral pathogen in young infants worldwide. We found that RSV induces a potent antiviral state in WD-PBECs that was mediated in part by secreted factors, including interferon lambda-1 (IFNλ1)/IL-29. In contrast, type I interferons were not detected following RSV infection of WD-PBECs., Interferon (IFN) responses in RSV-infected WD-PBECs reflected those in lower airway samples from RSV-hospitalized infants. In view of the prominence of IL-29, we determined whether recombinant IL-29 treatment of WD-PBECs before or after infection abrogated RSV replication. Interestingly, IL-29 demonstrated prophylactic, but not therapeutic, potential against RSV. The absence of therapeutic potential reflected effective RSV antagonism of IFN-mediated antiviral responses in infected cells. Our data are consistent with RSV non-structural proteins 1 and/or 2 perturbing the Jak-STAT signaling pathway, with concomitant reduced expression of antiviral effector molecules, such as MxA/B. Antagonism of Jak-STAT signaling was restricted to RSV-infected cells in WD-PBEC cultures. Importantly, our study provides the rationale to further explore IL-29 as a novel RSV prophylactic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Respiratory Syncytial Virus (RSV) is an important causative agent of lower respiratory tract infections in infants and elderly. Its fusion (F) protein is critical for virus infection. It is targeted by several investigational antivirals and by palivizumab, a humanised monoclonal antibody used prophylactically in infants considered at high risk of severe RSV disease. ALX-0171 is a trimeric Nanobody that binds the antigenic site II of RSV F-protein with subnanomolar affinity. ALX-0171 demonstrated superior in vitro neutralisation compared to palivizumab against prototypic RSV A and B strains. Moreover, ALX-0171 completely blocked replication below limit of detection in 87% of the viruses tested versus 18% for palivizumab at a fixed concentration. Importantly, ALX-0171 was highly effective in reducing both nasal and lung RSV titers when delivered prophylactically or therapeutically directly to the lungs of cotton rats. ALX-0171 represents a potent novel antiviral compound with significant potential to treat RSV-mediated disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Information and collated statistical analysis on the decline of red squirrels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: RSV causes considerable morbidity and mortality in children. In cystic fibrosis (CF) viral infections are associated with worsening respiratory symptoms and bacterial colonization. Palivizumab is effective in reducing RSV hospitalization in high risk patient groups. Evidence regarding its effectiveness and safety in CF is inconclusive. CF screening in N. Ireland enabled timely palivizumab prophylaxis, becoming routine in 2002.

OBJECTIVES: To determine the effect of palivizumab on RSV-related hospitalization and compare lung function and bacterial colonization at age 6 years for those born pre- and post-introduction of palivizumab prophylaxis.

METHODS: A retrospective audit was conducted for all patients diagnosed with CF during the period from 1997 to 2007 inclusive. RSV-related hospitalization, time to Pseudomonas aeruginosa (PA) 1st isolate, lung function and growth parameters were recorded. Comparisons were made for outcomes pre- and post-introduction of routine palivizumab administration in 2002. A cost evaluation was also performed.

RESULTS: Ninety-two children were included; 47 pre- and 45 post-palivizumab introduction. The overall RSV-positive hospitalization rate was 13%. The relative risk of RSV infection in palivizumab non-recipients versus recipients was 4.78 (95%CI: 1.1-20.7), P = 0.027. Notably, PA 1st isolate was significantly earlier in the palivizumab recipient cohort versus non-recipient cohort (median 57 vs. 96 months, P < 0.025) with a relative risk of 2.5. Chronic PA infection at 6 years remained low in both groups, with similar lung function and growth parameters. Total costs were calculated at £96,127 ($151,880) for the non-recipient cohort versus £137,954 ($217,967) for the recipient cohort.

CONCLUSION: Palivizumab was effective in reducing RSV-related hospitalization infection in CF patients. Surprisingly, we found a significantly earlier time to 1st isolate of PA in palivizumab recipients which we could not explain by altered or improved diagnostic tests. 

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To create clinically useful gold nanoparticle (AuNP) based cancer therapeutics it is necessary to co-functionalize the AuNP surface with a range of moieties; e.g. Polyethylene Glycol (PEG), peptides and drugs. AuNPs can be functionalized by creating either a mixed monolayer by attaching all the moieties directly to the surface using thiol chemistry, or by binding groups to the surface by means of a bifunctional polyethylene glycol (PEG) linker. The linker methodology has the potential to enhance bioavailability and the amount of functional agent that can be attached. While there is a large body of published work using both surface arrangements independently, the impact of attachment methodology on stability, non-specific protein adsorption and cellular uptake is not well understood, with no published studies directly comparing the two most frequently employed approaches. This paper compares the two methodologies by synthesizing and characterizing PEG and Receptor Mediated Endocytosis (RME) peptide co-functionalized AuNPs prepared using both the mixed monolayer and linker approaches. Successful attachment of both PEG and RME peptide using the two methods was confirmed using Dynamic Light Scattering, Fourier Transform Infrared Spectroscopy and gel electrophoresis. It was observed that while the 'as synthesized' citrate capped AuNPs agglomerated under physiological salt conditions, all the mixed monolayer and PEG linker capped samples remained stable at 1M NaCl, and were stable in PBS over extended periods. While it was noted that both functionalization methods inhibited non-specific protein attachment, the mixed monolayer samples did show some changes in gel electrophoresis migration profile after incubation with fetal calf serum. PEG renders the AuNP stable in-vivo however, studies with MDA-MB-231 and MCF 10A cell lines indicated that functionalization with PEG, blocks cellular uptake. It was observed that co-functionalization with RME peptide using both the mixed monolayer and PEG linker methods greatly enhanced cellular internalization compared to PEG capped AuNPs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de dout., Biologia, Faculdade de Engenharia de Recursos Naturais, Univ. do Algarve, 2003

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de doutoramento, Ciências Biotecnológicas (Engenharia Bioquímica), Faculdade de Ciências e Tecnologia, Univ. do Algarve, 2011

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mest., Engenharia Biológica, Faculdade de Ciências e Tecnologia, Univ. do Algarve, 2011