971 resultados para Video tracking


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that the sensor self-localization problem can be cast as a static parameter estimation problem for Hidden Markov Models and we implement fully decentralized versions of the Recursive Maximum Likelihood and on-line Expectation-Maximization algorithms to localize the sensor network simultaneously with target tracking. For linear Gaussian models, our algorithms can be implemented exactly using a distributed version of the Kalman filter and a novel message passing algorithm. The latter allows each node to compute the local derivatives of the likelihood or the sufficient statistics needed for Expectation-Maximization. In the non-linear case, a solution based on local linearization in the spirit of the Extended Kalman Filter is proposed. In numerical examples we demonstrate that the developed algorithms are able to learn the localization parameters. © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present algorithms for tracking and reasoning of local traits in the subsystem level based on the observed emergent behavior of multiple coordinated groups in potentially cluttered environments. Our proposed Bayesian inference schemes, which are primarily based on (Markov chain) Monte Carlo sequential methods, include: 1) an evolving network-based multiple object tracking algorithm that is capable of categorizing objects into groups, 2) a multiple cluster tracking algorithm for dealing with prohibitively large number of objects, and 3) a causality inference framework for identifying dominant agents based exclusively on their observed trajectories.We use these as building blocks for developing a unified tracking and behavioral reasoning paradigm. Both synthetic and realistic examples are provided for demonstrating the derived concepts. © 2013 Springer-Verlag Berlin Heidelberg.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present an expectation-maximisation (EM) algorithm for maximum likelihood estimation in multiple target models (MTT) with Gaussian linear state-space dynamics. We show that estimation of sufficient statistics for EM in a single Gaussian linear state-space model can be extended to the MTT case along with a Monte Carlo approximation for inference of unknown associations of targets. The stochastic approximation EM algorithm that we present here can be used along with any Monte Carlo method which has been developed for tracking in MTT models, such as Markov chain Monte Carlo and sequential Monte Carlo methods. We demonstrate the performance of the algorithm with a simulation. © 2012 ISIF (Intl Society of Information Fusi).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The visual system must learn to infer the presence of objects and features in the world from the images it encounters, and as such it must, either implicitly or explicitly, model the way these elements interact to create the image. Do the response properties of cells in the mammalian visual system reflect this constraint? To address this question, we constructed a probabilistic model in which the identity and attributes of simple visual elements were represented explicitly and learnt the parameters of this model from unparsed, natural video sequences. After learning, the behaviour and grouping of variables in the probabilistic model corresponded closely to functional and anatomical properties of simple and complex cells in the primary visual cortex (V1). In particular, feature identity variables were activated in a way that resembled the activity of complex cells, while feature attribute variables responded much like simple cells. Furthermore, the grouping of the attributes within the model closely parallelled the reported anatomical grouping of simple cells in cat V1. Thus, this generative model makes explicit an interpretation of complex and simple cells as elements in the segmentation of a visual scene into basic independent features, along with a parametrisation of their moment-by-moment appearances. We speculate that such a segmentation may form the initial stage of a hierarchical system that progressively separates the identity and appearance of more articulated visual elements, culminating in view-invariant object recognition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to its importance, video segmentation has regained interest recently. However, there is no common agreement about the necessary ingredients for best performance. This work contributes a thorough analysis of various within- and between-frame affinities suitable for video segmentation. Our results show that a frame-based superpixel segmentation combined with a few motion and appearance-based affinities are sufficient to obtain good video segmentation performance. A second contribution of the paper is the extension of [1] to include motion-cues, which makes the algorithm globally aware of motion, thus improving its performance for video sequences. Finally, we contribute an extension of an established image segmentation benchmark [1] to videos, allowing coarse-to-fine video segmentations and multiple human annotations. Our results are tested on BMDS [2], and compared to existing methods. © 2013 Springer-Verlag.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single-sensor maximum power point tracking algorithms for photovoltaic systems are presented. The algorithms have the features, characteristics and advantages of the widely used incremental conductance (INC) algorithm. However; unlike the INC algorithm which requires two sensors (the voltage sensor and the current sensor), the single-sensor algorithms are more desirable because they require only one sensor: the voltage sensor. The algorithms operate by maximising power at the DC-DC converter output, instead of the input. © 2013 The Institution of Engineering and Technology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

From a hybrid systems point of view, we provide a modeling framework and a trajectory tracking control design methodology for juggling systems. We present the main ideas and concepts in a one degree-of-freedom juggler, which consists of a ball bouncing on an actuated robot. We design a hybrid control strategy that, with only information of the ball's state at impacts, controls the ball to track a reference rhythmic pattern with arbitrary precision. We extend this hybrid control strategy to the case of juggling multiple balls with different rhythmic patterns. Simulation results for juggling of one and three balls with a single actuated robot are presented. © 2007 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents analysis and application of steering control laws for a network of self-propelled, planar particles. We explore together the two stably controlled group motions, parallel motion and circular motion, for modeling and design purposes. We show that a previously considered control law simultaneously stabilizes both parallel and circular group motion, leading to Instability and hysteresis. We also present behavior primitives that enable piecewise-linear network trajectory tracking.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of a novel label-free graphene sensor array is presented. Detection is based on modification of graphene FET devices and specifically monitoring the change in composition of the nutritive components in culturing medium. Micro-dispensing of Escherichia coli in medium shows feasibility of accurate positioning over each sensor while still allowing cell proliferation. Graphene FET device fabrication, sample dosing, and initial electrical characterisation have been completed and show a promising approach to reducing the sample size and lead time for diagnostic and drug development protocols through a label-free and reusable sensor array fabricated with standard and scalable microfabrication technologies. Copyright © 2012 Ronan Daly et al.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Temporal synchronization of multiple video recordings of the same dynamic event is a critical task in many computer vision applications e.g. novel view synthesis and 3D reconstruction. Typically this information is implied, since recordings are made using the same timebase, or time-stamp information is embedded in the video streams. Recordings using consumer grade equipment do not contain this information; hence, there is a need to temporally synchronize signals using the visual information itself. Previous work in this area has either assumed good quality data with relatively simple dynamic content or the availability of precise camera geometry. In this paper, we propose a technique which exploits feature trajectories across views in a novel way, and specifically targets the kind of complex content found in consumer generated sports recordings, without assuming precise knowledge of fundamental matrices or homographies. Our method automatically selects the moving feature points in the two unsynchronized videos whose 2D trajectories can be best related, thereby helping to infer the synchronization index. We evaluate performance using a number of real recordings and show that synchronization can be achieved to within 1 sec, which is better than previous approaches. Copyright 2013 ACM.