943 resultados para Veterinary Infectious Diseases
Resumo:
A insuficiência renal crónica (IRC) é uma das doenças renais que afecta com mais incidência os animais de companhia, sendo a doença renal frequentemente mais diagnosticada no gato. O objetivo deste estudo consistiu determinar a distribuição de ocorrência dos diferentes níveis de estadiamento em pacientes diagnosticados com doença renal crónica, identificar os sinais mais comuns na apresentação clínica, avaliar os parâmetros bioquímicos e clínicos abrangidos no estadiamento e substadiamento, caracterizar os diversos estadios de doença de acordo com as características individuais (sexo, raça e idade), e determinar a existência de relação entre os parâmetros anteriores com o desenvolvimento e duração temporal de doença. O estudo contemplou uma amostra aleatória de 100 gatos com Insuficiência Renal Crónica (IRC) apresentados à consulta ou internados no Hospital Veterinário do Restelo, no período compreendido de Abril de 2011 a Maio de 2012 inclusive. Os animais foram estadiados e subestadiados segundo os valores propostos pela International Renal Interest Society (IRIS). O estudo serviu ainda, para compreender algumas limitações associadas aos exames complementares necessários ao estadiamento e subestadiamento da doença, que podem limitar um diagnóstico precoce. No estudo foi possível verificar que da distribuição de faixas etárias, os geriátricos são mais afectados, assim como o sinal clínico mais apresentado pelos pacientes foi PU/PD, seguido de anorexia e vómito. A maioria dos felinos encontra-se no estádio II (azotémia renal ligeira), vindo o número de indivíduos a diminuir com o aumento do grau dos estadios de doença.
Resumo:
A Estenose Pulmonar (EP) é uma doença cardíaca congénita (DCC) caracterizada por obstrução dinâmica ou fixa do trato de saída do ventrículo direito. A EP vem referida como sendo a terceira DCC mais diagnosticada no cão, havendo, no entanto estudos mais recentes classificam-na como a segunda mais comum ou até a primeira. A forma de EP mais comum é a valvular, provando-se ter uma base hereditária poligénica em beagles e pensando-se ter um caracter autossómico recessivo em golden retrievers. As raças mais afetadas pela EP são o bulldog inglês, bulldog francês, boxer, pitbull, schnautzer entre outras. A maioria dos indivíduos afetados por esta condição não apresenta sinais clínicos, sendo a maioria dos indivíduos com EP descobertos pela presença de um sopro e conseguinte investigação. Cerca de 35% dos cães com EP severa demonstram intolerância ao exercício, sincope ou ascite. O sopro detetado à auscultação é sistólico de ejeção crescendo-decrescendo com ponto de máxima intensidade na base esquerda radiando dorsalmente. A ecocardiografia é um método expedito na deteção e caracterização da gravidade da doença. O prognóstico depende da gravidade da lesão e se o individuo está ou não assintomático na altura da apresentação. Este trabalho teve como objetivo estudar a EP numa população canina exposta a ecocardiografia no Hospital Veterinário do Porto (HVP). Neste estudo fez-se uma análise retrospetiva das alterações cardiovasculares diagnosticadas a cães no serviço de ecocardiografia do HVP, entre Março de 2003 e Fevereiro de 2012. Foram sujeitos a ecocardiografia neste período 808 cães, 715 dos quais com alterações cardiovasculares, a prevalência de DCC’s foi de 13.8%. A EP foi a segunda DCC mais diagnosticada nesta população de animais (2.80%), surgindo em 20 dos 99 cães com DCCs (20.2%). A forma de EP mais diagnosticada foi a valvular. As raças Boxer, Terranova, Dogue argentino e Fila brasileiro apresentam um maior risco relativo de terem EP. Não se verificou a existência de uma relação estatística significativa entre o sexo e a EP, quer considerando a amostra completa, quer separando por raça. A instauração de programas e normas de rastreio de EP em reprodutores, em Portugal, permitirá diminuir a incidência da doença e ter uma verdadeira noção da prevalência desta doença na população canina.
Resumo:
A Doença Renal Crónica (DRC) é de natureza insidiosa, progressiva e irreversível e uma grande causa de morbilidade e mortalidade em gatos. O comportamento natural da espécie felina fica comprometido no meio doméstico, originando situações de stress que desempenham um papel importante na patogénese da doença crónica. A literatura sugere que a activação contínua do sistema nervoso simpático desencadeia uma série de processos fisiológicos que se traduzem por último no aparecimento de fibrose renal, contribuindo assim para a progressão da DRC. Esta dissertação pretende avaliar essa relação. Para tal, foram analisados questionários que permitissem avaliar as condições em que viviam uma amostra de 139 gatos e realizados painéis hematológicos e bioquímicos a uma sub-amostra para verificar as correlações existentes. Ainda que não tenha sido possível concluir que a presença de um parâmetro individual possa ser apontada como causa directa do desenvolvimento de DRC, podemos identificar um conjunto de factores ambientais causadores de stress como prováveis factores de risco para a degradação desta doença e a sua transição para fases mais avançadas. Desta forma, a implementação de estratégias de enriquecimento ambiental MEMO (Multimodal Environmental Modification) não só visa melhorar a qualidade de vida destes animais como se pode revelar uma chave de sucesso na prevenção e maneio de doenças crónicas.
Resumo:
Globalization has been accompanied by the rapid spread of infectious diseases, and further strain on working conditions for health workers globally. Post-SARS, Canadian occupational health and infection control researchers got together to study how to better protect health workers, and found that training was indeed perceived as key to a positive safety culture. This led to developing information and communication technology (ICT) tools. The research conducted also showed the need for better workplace inspections, so a workplace audit tool was also developed to supplement worker questionnaires and the ICT. When invited to join Ecuadorean colleagues to promote occupational health and infection control, these tools were collectively adapted and improved, including face-to-face as well as on-line problem-based learning scenarios. The South African government then invited the team to work with local colleagues to improve occupational health and infection control, resulting in an improved web-based health information system to track incidents, exposures, and occupational injury and diseases. As the H1N1 pandemic struck, the online infection control course was adapted and translated into Spanish, as was a novel skill-building learning tool that permits health workers to practice selecting personal protective equipment. This tool was originally developed in collaboration with the countries from the Caribbean region and the Pan American Health Organization (PAHO). Research from these experiences led to strengthened focus on building capacity of health and safety committees, and new modules are thus being created, informed by that work. The products developed have been widely heralded as innovative and interactive, leading to their inclusion into “toolkits” used internationally. The tools used in Canada were substantially improved from the collaborative adaptation process for South and Central America and South Africa. This international collaboration between occupational health and infection control researchers led to the improvement of the research framework and development of tools, guidelines and information systems. Furthermore, the research and knowledge-transfer experience highlighted the value of partnership amongst Northern and Southern researchers in terms of sharing resources, experiences and knowledge.
Resumo:
This paper investigates the applications of capture–recapture methods to human populations. Capture–recapture methods are commonly used in estimating the size of wildlife populations but can also be used in epidemiology and social sciences, for estimating prevalence of a particular disease or the size of the homeless population in a certain area. Here we focus on estimating the prevalence of infectious diseases. Several estimators of population size are considered: the Lincoln–Petersen estimator and its modified version, the Chapman estimator, Chao’s lower bound estimator, the Zelterman’s estimator, McKendrick’s moment estimator and the maximum likelihood estimator. In order to evaluate these estimators, they are applied to real, three-source, capture-recapture data. By conditioning on each of the sources of three source data, we have been able to compare the estimators with the true value that they are estimating. The Chapman and Chao estimators were compared in terms of their relative bias. A variance formula derived through conditioning is suggested for Chao’s estimator, and normal 95% confidence intervals are calculated for this and the Chapman estimator. We then compare the coverage of the respective confidence intervals. Furthermore, a simulation study is included to compare Chao’s and Chapman’s estimator. Results indicate that Chao’s estimator is less biased than Chapman’s estimator unless both sources are independent. Chao’s estimator has also the smaller mean squared error. Finally, the implications and limitations of the above methods are discussed, with suggestions for further development.
Resumo:
Foot and mouth disease (FMD) is a major threat, not only to countries whose economies rely on agricultural exports, but also to industrialised countries that maintain a healthy domestic livestock industry by eliminating major infectious diseases from their livestock populations. Traditional methods of controlling diseases such as FMD require the rapid detection and slaughter of infected animals, and any susceptible animals with which they may have been in contact, either directly or indirectly. During the 2001 epidemic of FMD in the United Kingdom (UK), this approach was supplemented by a culling policy driven by unvalidated predictive models. The epidemic and its control resulted in the death of approximately ten million animals, public disgust with the magnitude of the slaughter, and political resolve to adopt alternative options, notably including vaccination, to control any future epidemics. The UK experience provides a salutary warning of how models can be abused in the interests of scientific opportunism.
Resumo:
This paper investigates the applications of capture-recapture methods to human populations. Capture-recapture methods are commonly used in estimating the size of wildlife populations but can also be used in epidemiology and social sciences, for estimating prevalence of a particular disease or the size of the homeless population in a certain area. Here we focus on estimating the prevalence of infectious diseases. Several estimators of population size are considered: the Lincoln-Petersen estimator and its modified version, the Chapman estimator, Chao's lower bound estimator, the Zelterman's estimator, McKendrick's moment estimator and the maximum likelihood estimator. In order to evaluate these estimators, they are applied to real, three-source, capture-recapture data. By conditioning on each of the sources of three source data, we have been able to compare the estimators with the true value that they are estimating. The Chapman and Chao estimators were compared in terms of their relative bias. A variance formula derived through conditioning is suggested for Chao's estimator, and normal 95% confidence intervals are calculated for this and the Chapman estimator. We then compare the coverage of the respective confidence intervals. Furthermore, a simulation study is included to compare Chao's and Chapman's estimator. Results indicate that Chao's estimator is less biased than Chapman's estimator unless both sources are independent. Chao's estimator has also the smaller mean squared error. Finally, the implications and limitations of the above methods are discussed, with suggestions for further development.
Resumo:
Networks are ubiquitous in natural, technological and social systems. They are of increasing relevance for improved understanding and control of infectious diseases of plants, animals and humans, given the interconnectedness of today's world. Recent modelling work on disease development in complex networks shows: the relative rapidity of pathogen spread in scale-free compared with random networks, unless there is high local clustering; the theoretical absence of an epidemic threshold in scale-free networks of infinite size, which implies that diseases with low infection rates can spread in them, but the emergence of a threshold when realistic features are added to networks (e.g. finite size, household structure or deactivation of links); and the influence on epidemic dynamics of asymmetrical interactions. Models suggest that control of pathogens spreading in scale-free networks should focus on highly connected individuals rather than on mass random immunization. A growing number of empirical applications of network theory in human medicine and animal disease ecology confirm the potential of the approach, and suggest that network thinking could also benefit plant epidemiology and forest pathology, particularly in human-modified pathosystems linked by commercial transport of plant and disease propagules. Potential consequences for the study and management of plant and tree diseases are discussed.
Resumo:
Severe acute respiratory syndrome (SARS) coronavirus (SCoV) spike (S) protein is the major surface antigen of the virus and is responsible for receptor binding and the generation of neutralizing antibody. To investigate SCoV S protein, full-length and individual domains of S protein were expressed on the surface of insect cells and were characterized for cleavability and reactivity with serum samples obtained from patients during the convalescent phase of SARS. S protein could be cleaved by exogenous trypsin but not by coexpressed furin, suggesting that the protein is not normally processed during infection. Reactivity was evident by both flow cytometry and Western blot assays, but the pattern of reactivity varied according to assay and sequence of the antigen. The antibody response to SCoV S protein involves antibodies to both linear and conformational epitopes, with linear epitopes associated with the carboxyl domain and conformational epitopes associated with the amino terminal domain. Recombinant SCoV S protein appears to be a suitable antigen for the development of an efficient and sensitive diagnostic test for SARS, but our data suggest that assay format and choice of S antigen are important considerations.
Resumo:
Weaning is a stressful process for kittens, and is often associated with diarrhoea and the onset of infectious diseases. The gastrointestinal microbiota plays an essential role in host well-being, including improving homeostasis. Composition of the gastrointestinal microbiota of young cats is poorly understood, and the impact of diet on the kitten microbiota unknown. The aims of this study were to monitor the faecal microbiota of kittens and determine the effect(s) of diet on its composition. Bacterial succession was monitored in two groups of kittens (at 4 and 6 weeks, and 4 and 9 months of age) fed different foods. Age-related microbial changes revealed significantly different counts of total bacteria, lactic acid bacteria, Desulfovibrionales, Clostridium cluster IX and Bacteroidetes between 4-week- and 9-month-old kittens. Diet-associated differences in the faecal microbiota of the two feeding groups were evident. In general, fluorescence in situ hybridization analysis demonstrated bifidobacteria, Atopobium group, Clostridium cluster XIV and lactic acid bacteria were dominant in kittens. Denaturing gradient gel electrophoresis profiling showed highly complex and diverse faecal microbiotas for kittens, with age- and/or food-related changes seen in relation to species richness and similarity indices. Four-week-old kittens harboured more diverse and variable profiles than those of weaned kittens.
Resumo:
Antimicrobial drug resistance is a global challenge for the 21st century with the emergence of resistant bacterial strains worldwide. Transferable resistance to beta-lactam antimicrobial drugs, mediated by production of extended-spectrum beta-lactamases (ESBLs), is of particular concern. In 2004, an ESBL-carrying IncK plasmid (pCT) was isolated from cattle in the United Kingdom. The sequence was a 93,629-bp plasmid encoding a single antimicrobial drug resistance gene, bla(CTX-M-14). From this information, PCRs identifying novel features of pCT were designed and applied to isolates from several countries, showing that the plasmid has disseminated worldwide in bacteria from humans and animals. Complete DNA sequences can be used as a platform to develop rapid epidemiologic tools to identify and trace the spread of plasmids in clinically relevant pathogens, thus facilitating a better understanding of their distribution and ability to transfer between bacteria of humans and animals.