950 resultados para Very-High-Cycle Fatigue


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sexual dimorphism in the dentition and skeleton of the four extant species of snub-nosed langurs, Rhinopithecus (R.) bieti, R. (R.) brelichi, R. (R.) roxellana and R. (Presbytiscus) avunculus, was studied. The species shared a similar general pattern of sexual dimorphism, but were found to differ in respects that appear to reflect the influence of disparate socioecological and environmental factors. All the species showed marked canine dimorphism, but the very high degree of canine dimorphism in R. bieti appeared to be due to the intensity of intermale competition for mates during a temporally restricted breeding season, and possibly also to the intensity of competition between males for other resources during other times of the year. Sexual dimorphism in the postcranial skeleton of Rhinopithecus species was also most pronounced in R. bieti and may be related to the relatively higher frequency of terrestrial locomotion in males of the species. (C) 1995 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Single electron transistors are fabricated on single Si nanochains, synthesised by thermal evaporation of SiO solid sources. The nanochains consist of one-dimensional arrays of ~10nm Si nanocrystals, separated by SiO 2 regions. At 300 K, strong Coulomb staircases are seen in the drain-source current-voltage (I ds-V ds) characteristics, and single-electron oscillations are seen in the drain-source current-gate voltage (I ds-V ds) characteristics. From 300-20 K, a large increase in the Coulomb blockade region is observed. The characteristics are explained using singleelectron Monte Carlo simulation, where an inhomogeneous multiple tunnel junction represents a nanochain. Any reduction in capacitance at a nanocrystal well within the nanochain creates a conduction " bottleneck", suppressing current at low voltage and improving the Coulomb staircase. The single-electron charging energy at such an island can be very high, ~20k BT at 300 K. © 2012 The Japan Society of Applied Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A friction test rig has been developed to carry out repeated sliding friction tests for premium tubular connections. The test rig enables accurate measurement of friction in various contact regimes which are relevant to the threaded connections between tubular components. Higher load tests can simulate the contact in metal-to-metal seals under very high contact pressures by using perpendicular pin-on-pin tests. The contact in the thread loading flank under intermediate pressures can be simulated by using larger radius coupon-on-coupon tests. The measured coefficient of friction is well correlated with a lubrication parameter combining lubricant film thickness and initial surface roughness. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Discrete inkspots of very high copper content were produced using inkjet technology. The reagent disproportionates at low temperature to deposit copper on glass. These deposits were shown to be more than 90% copper by weight by electron probe microanalysis and microbeam Rutherford backscatttering spectroscopy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The concept of a superconducting flux pump is relatively straightforward. A small magnetic field repeatedly applied will lead to a much larger field being trapped within the superconductor. This field is limited by the volume of the superconductor and by its critical current but not by the excitation field. Here we will describe a new technique which facilitates the creation of high magnetic fields and where the magnitude of the trapped field is limited by the superconductor not the magnetising field. The technique is demonstrated using measurements taken using samples of bulk YBCO as YBCO has a very high irreversibility field and has the potential to trap high magnetic fields. The technique could be applied to other superconductors such as BSCCO or MgB2 and in other forms such as thin or thick films. © 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High brightness trans-reflective bi-stable displays based on smectic A (SmA) liquid crystals (LCs) can have nearly perfect transparency in the clear state and very high reflection in the scattered state. Because the LC material in use is stable under UV radiation, this kind of displays can stand for strong day-light and therefore be ideal for outdoor applications from e-books to public signage and advertisement. However, the colour application has been limited because the traditional colourants in use are conventional dyes which are lack of UV stability and that their colours are easily photo bleached. Here we present a colour SmA display demonstrator using pigments as colourant. Mixing pigments with SmA LCs and maintain the desirable optical switching performance is not straightforward. We show here how it can be done, including how to obtain fine sized pigment nano-particles, the effects of particle size and size distribution on the display performance. Our optimized pigments/SmA compositions can be driven by a low frequency waveform (∼101Hz) to a scattered state to exhibit colour while by a high frequency waveform (∼103Hz) to a cleared state showing no colour. Finally, we will present its excellent UV life-time (at least >7.2 years) in comparison with that of dye composition (∼2.4 years). The complex interaction of pigment nano-particles with LC molecules and the resulting effects on the LC electro-optical performances are still to be fully understood. We hope this work will not only demonstrate a new and practical approach for outdoor reflective colour displays but also provide a new material system for fundamental liquid crystal colloid research work. © 2012 SPIE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computer simulation results are reported for a realistic polarizable potential model of water in the supercooled region. Three states, corresponding to the low density amorphous ice, high density amorphous ice, and very high density amorphous ice phases are chosen for the analyses. These states are located close to the liquid-liquid coexistence lines already shown to exist for the considered model. Thermodynamic and structural quantities are calculated, in order to characterize the properties of the three phases. The results point out the increasing relevance of the interstitial neighbors, which clearly appear in going from the low to the very high density amorphous phases. The interstitial neighbors are found to be, at the same time, also distant neighbors along the hydrogen bonded network of the molecules. The role of these interstitial neighbors has been discussed in connection with the interpretation of recent neutron scattering measurements. The structural properties of the systems are characterized by looking at the angular distribution of neighboring molecules, volume and face area distribution of the Voronoi polyhedra, and order parameters. The cumulative analysis of all the corresponding results confirms the assumption that a close similarity between the structural arrangement of molecules in the three explored amorphous phases and that of the ice polymorphs I(h), III, and VI exists.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lattice materials are characterized at the microscopic level by a regular pattern of voids confined by walls. Recent rapid prototyping techniques allow their manufacturing from a wide range of solid materials, ensuring high degrees of accuracy and limited costs. The microstructure of lattice material permits to obtain macroscopic properties and structural performance, such as very high stiffness to weight ratios, highly anisotropy, high specific energy dissipation capability and an extended elastic range, which cannot be attained by uniform materials. Among several applications, lattice materials are of special interest for the design of morphing structures, energy absorbing components and hard tissue scaffold for biomedical prostheses. Their macroscopic mechanical properties can be finely tuned by properly selecting the lattice topology and the material of the walls. Nevertheless, since the number of the design parameters involved is very high, and their correlation to the final macroscopic properties of the material is quite complex, reliable and robust multiscale mechanics analysis and design optimization tools are a necessary aid for their practical application. In this paper, the optimization of lattice materials parameters is illustrated with reference to the design of a bracket subjected to a point load. Given the geometric shape and the boundary conditions of the component, the parameters of four selected topologies have been optimized to concurrently maximize the component stiffness and minimize its mass. Copyright © 2011 by ASME.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Partially premixed compression ignition (PPCI) engines operating with a low temperature highly homogeneous charge have been demonstrated previously using conventional diesel fuel. The short ignition delay of conventional diesel fuel requires high fuel injection pressures to achieve adequate premixing along with high levels of EGR (exhaust gas recirculation) to achieve low NOx emissions. Low load operating regions are typified by substantial emissions of CO and HC and there exists an upper operating load limitation due to very high rates of in-cylinder gas pressure rise. In this study mixtures of gasoline and diesel fuel were investigated using a multi-cylinder light duty diesel engine. It was found that an increased proportion of gasoline fuel reduced smoke emissions at higher operating loads through an increase in charge premixing resulting from an increase in ignition delay and higher fuel volatility. The results of this investigation confirm that a combination of fuel properties, exhibiting higher volatility and increased ignition delay, would enable a widening of the low emission operating regime, but that consideration must be given to combustion stability at low operating loads. Copyright © 2007 SAE International.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In conventional planar growth of bulk III-V materials, a slow growth rate favors high crystallographic quality, optical quality, and purity of the resulting material. Surprisingly, we observe exactly the opposite effect for Au-assisted GaAs nanowire growth. By employing a rapid growth rate, the resulting nanowires are markedly less tapered, are free of planar crystallographic defects, and have very high purity with minimal intrinsic dopant incorporation. Importantly, carrier lifetimes are not adversely affected. These results reveal intriguing behavior in the growth of nanoscale materials, and represent a significant advance toward the rational growth of nanowires for device applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Portland cement (PC) is the most widely used binder for ground improvement. However, there are significant environmental impacts associated with its production in terms of high energy consumption and CO2 emissions. Hence, the use of industrial by-products materials or new low-carbon footprint alternative cements has been encouraged. Ground granulated blastfurnace slag (GGBS), a by-product of the steel industry, has been successfully used for such an application, usually activated with an alkali such as lime or PC. In this study the use of MgO as a novel activator for GGBS in ground improvement of soft soils is addressed and its performance was compared to the above two conventional activators as well as PC alone. The GGBS:activator ratio used in this study was 9:1. A range of tests was performed at three curing periods (7, 28 and 90 days), including unconfined compressive strength (UCS), permeability and microstructure analysis. The results show that the MgO performed as the most efficient activator yielding the highest strength and the lowest permeability indicating a very high stabilisation efficiency of the system. © 2012 American Society of Civil Engineers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents for the first time the performance of a silicon-on-insulator (SOI) p-n thermodiode, which can operate in an extremely wide temperature range of 200°C to 700°C while maintaining its linearity. The thermodiode is embedded in a thin dielectric membrane underneath a tungsten microheater, which allows the diode characterization at very high temperature (> 800°C). The effect of the junction area (Aj) on the thermodiode linearity, sensitivity and self-heating is experimentally and theoretically investigated. Results on the long-term diode stability at high temperature are also reported. © 2013 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, we describe a simple method to reversibly tune the wetting properties of vertically aligned carbon nanotube (CNT) arrays. Here, CNT arrays are defined as densely packed multi-walled carbon nanotubes oriented perpendicular to the growth substrate as a result of a growth process by the standard thermal chemical vapor deposition (CVD) technique.(1,2) These CNT arrays are then exposed to vacuum annealing treatment to make them more hydrophobic or to dry oxidation treatment to render them more hydrophilic. The hydrophobic CNT arrays can be turned hydrophilic by exposing them to dry oxidation treatment, while the hydrophilic CNT arrays can be turned hydrophobic by exposing them to vacuum annealing treatment. Using a combination of both treatments, CNT arrays can be repeatedly switched between hydrophilic and hydrophobic.(2) Therefore, such combination show a very high potential in many industrial and consumer applications, including drug delivery system and high power density supercapacitors.(3-5) The key to vary the wettability of CNT arrays is to control the surface concentration of oxygen adsorbates. Basically oxygen adsorbates can be introduced by exposing the CNT arrays to any oxidation treatment. Here we use dry oxidation treatments, such as oxygen plasma and UV/ozone, to functionalize the surface of CNT with oxygenated functional groups. These oxygenated functional groups allow hydrogen bond between the surface of CNT and water molecules to form, rendering the CNT hydrophilic. To turn them hydrophobic, adsorbed oxygen must be removed from the surface of CNT. Here we employ vacuum annealing treatment to induce oxygen desorption process. CNT arrays with extremely low surface concentration of oxygen adsorbates exhibit a superhydrophobic behavior.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the domain of energy storage, electrochemical capacitors have numerous applications ranging from hybrid vehicles to consumer electronics, with very high power density at the cost of relatively low energy storage. Here, we report an approach that uses vertically aligned carbon nanotube arrays as electrodes in electrochemical capacitors. Different electrolytes were used and multiple parameters of carbon nanotube array were compared: carbon nanotube arrays were shown to be two to three times better than graphite in term of specific capacitance, while the surface functionalization was demonstrated to be a critical factor in both aqueous and nonaqueous solutions to increase the specific capacitance. We found that a maximum energy density of 21 Wh/kg at a power density of 1.1 kW/kg for a hydrophilic electrode, could be easily achieved by using tetraethylammonium tetrafluoroborate in propylene carbonate. These are encouraging results in the path of energy-storage devices with both high energy density and power density, using only carbon-based materials for the electrodes with a very long lifetime, of tens of thousands of cycles. © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Endogenous yolk nutrients are crucial for embryo and larval development in fish, but developmental behavior of the genes that control yolk utilization remains unknown. Apolipoproteins have been shown to play important roles in lipid transport and uptake through the circulation system. In this study, EcApoC-I, the first cloned ApoC-I in teleosts, has been screened from pituitary cDNA library of female orange-spotted grouper (Epinephelus coioides), and the deduced amino acid sequence shows 43.5% identity to one zebrafish (Danio rerio) hypothetical protein similar to ApoC-I, and 21.2%, 21.7%, 22.5%, 20%, and 22.5% identities to Apo C-I of human (Homo sapiens), house mouse (Mus musculus), common tree shrew (Tupaia glis), dog (Canis lupus familiaris) and hamadryas baboon (Papio hamadryas), respectively. Although the sequence identity is low, amphipathic alpha-helices with the potential to bind to lipid were predicted to exist in the EcApoC-I. RT-PCR analysis revealed that it was first transcribed in gastrula embryos and maintained a relatively stable expression level during the following embryogenesis. During embryonic and early larval development, a very high level of EcApoC-I expression was in the yolk syncytial layer, indicating that it plays a significant role in yolk degradation and transfers nutrition to the embryo and early larva. By the day 7 after hatching, EcApoC-I transcripts were observed in brain. In adult, EcApoC-I mRNA was detected abundantly in brain and gonad. In transitional gonads, the EcApoC-I expression is restricted to the germ cells. The data suggested that EcApoC-I might play an important role in brain and gonad morphogenesis and growth.