880 resultados para Vehicle Routing Problem Multi-Trip Ricerca Operativa TSP VRP
Resumo:
Expressing the properties of the exit material as a function of the potential difference and mass flux (scraping rate) and solving the mechanical problem in order to obtain a velocity field to be fed into multi-physics numerical platforms.
Resumo:
PURPOSE: To evaluate the clinical and MRI outcomes after the implantation of a nanostructured cell free aragonite-based scaffold in patients affected by knee chondral and osteochondral lesions. METHODS: 126 patients (94 men, 32 women; age 32.7±8.8 years) were included according to the following criteria: grade III or IV chondra/osteochondral lesions in the femoral condyles or throclea; 2) no limb axial deviation (i.e. varus or valgus knee > 5°); 3) no signs of knee instability; 4) no concurrent tibial or patellar chondral/osteochondral defects. All patients were treated by arthrotomic implantation of an aragonite based-scaffold by a press-fit technique. Patients were prospectively evaluated by IKDC, Tegner, Lysholm and KOOS scores preoperatively and then at 6, 12, 18 and 24-months follow-up. MRI was also performed to evaluate the amount of defect filling by regenerated cartilage. Failures were defined as the need for re-intervention in the index knee within the follow-up period. RESULTS: Average defect size was 2±1.3 cm2 and in most cases a single scaffold was used. A significant improvement in each clinical score was recorded from basal level to 24 months’ follow-up. In particular, the IKDC subjective score increased from 42.14±16 to 70.94±24.69 and the Tegner score improved from 2.95±1.90 to 4.82±1.85 (p<0.0005). Lysholm score and all the subscales of KOOS showed a similar trend over time. Age of the patient at implantation, size of the defect and BMI were correlated with lower clinical outcome. The presence of OA didn’t influence the clinical results. MRI evaluation showed a significant increase in defect filling over time, with the highest value reached at 24 months. Failures occurred in eleven patients (8.7%). CONCLUSION: The aragonite-based biomimetic osteochondral scaffold proved to be safe, and encouraging clinical and radiographic outcomes were documented up to 2 years’ follow-up.
Resumo:
The present doctoral thesis discusses the ways to improve the performance of driving simulator, provide objective measures for the road safety evaluation methodology based on driver’s behavior and response and investigates the drivers' adaptation to the driving assistant systems. The activities are divided into two macro areas; the driving simulation studies and on-road experiments. During the driving simulation experimentation, the classical motion cueing algorithm with logarithmic scale was implemented in the 2DOF motion cueing simulator and the motion cues were found desirable by the participants. In addition, it found out that motion stimuli could change the behaviour of the drivers in terms of depth/distance perception. During the on-road experimentations, The driver gaze behaviour was investigated to find the objective measures on the visibility of the road signs and reaction time of the drivers. The sensor infusion and the vehicle monitoring instruments were found useful for an objective assessment of the pavement condition and the drivers’ performance. In the last chapter of the thesis, the safety assessment during the use of level 1 automated driving “ACC” is discussed with the simulator and on-road experiment. The drivers’ visual behaviour was investigated in both studies with innovative classification method to find the epochs of the distraction of the drivers. The behavioural adaptation to ACC showed that drivers may divert their attention away from the driving task to engage in secondary, non-driving-related tasks.
Resumo:
The study of polymorphism has an important role in several fields of materials science, because structural differences lead to different physico-chemical properties of the system. This PhD work was dedicated to the investigation of polymorphism in Indigo, Thioindigo and Quinacridone, as case studies among the organic pigments employed as semiconductors, and in Paracetamol, Phenytoin and Nabumetone, chosen among some commonly used API. The aim of the research was to improve the understanding on the structures of bulk crystals and thin films, adopting Raman spectroscopy as the method of choice, while resorting to other experimental techniques to complement the gathered information. Different crystalline polymorphs, in fact, may be conveniently distinguished by their Raman spectra in the region of the lattice phonons (10-150 cm-1), the frequencies of which, probing the inter-molecular interactions, are very sensitive to even slight modifications in the molecular packing. In particular, we have used Confocal Raman Microscopy, which is a powerful, yet simple, technique for the investigation of crystal polymorphism in organic and inorganic materials, being capable of monitoring physical modifications, chemical transformations and phase inhomogeneities in crystal domains at the micrometre scale. In this way, we have investigated bulk crystals and thin film samples obtained with a variety of crystal growth and deposition techniques. Pure polymorphs and samples with phase mixing were found and fully characterized. Raman spectroscopy was complemented mainly by XRD measurements for bulk crystals and by AFM, GIXD and TEM for thin films. Structures and phonons of the investigated polymorphs were computed by DFT methods, and the comparison between theoretical and experimental results was used to assess the relative stability of the polymorphs and to assist the spectroscopic investigation. The Raman measurements were thus found to be able to clarify ambiguities in the phase assignments which otherwise the other methods were unable to solve.
Resumo:
In this thesis, we deal with the design of experiments in the drug development process, focusing on the design of clinical trials for treatment comparisons (Part I) and the design of preclinical laboratory experiments for proteins development and manufacturing (Part II). In Part I we propose a multi-purpose design methodology for sequential clinical trials. We derived optimal allocations of patients to treatments for testing the efficacy of several experimental groups by also taking into account ethical considerations. We first consider exponential responses for survival trials and we then present a unified framework for heteroscedastic experimental groups that encompasses the general ANOVA set-up. The very good performance of the suggested optimal allocations, in terms of both inferential and ethical characteristics, are illustrated analytically and through several numerical examples, also performing comparisons with other designs proposed in the literature. Part II concerns the planning of experiments for processes composed of multiple steps in the context of preclinical drug development and manufacturing. Following the Quality by Design paradigm, the objective of the multi-step design strategy is the definition of the manufacturing design space of the whole process and, as we consider the interactions among the subsequent steps, our proposal ensures the quality and the safety of the final product, by enabling more flexibility and process robustness in the manufacturing.
Resumo:
Nowadays, the spreading of the air pollution crisis enhanced by greenhouse gases emission is leading to the worsening of the global warming. In this context, the transportation sector plays a vital role, since it is responsible for a large part of carbon dioxide production. In order to address these issues, the present thesis deals with the development of advanced control strategies for the energy efficiency optimization of plug-in hybrid electric vehicles (PHEVs), supported by the prediction of future working conditions of the powertrain. In particular, a Dynamic Programming algorithm has been developed for the combined optimization of vehicle energy and battery thermal management. At this aim, the battery temperature and the battery cooling circuit control signal have been considered as an additional state and control variables, respectively. Moreover, an adaptive equivalent consumption minimization strategy (A-ECMS) has been modified to handle zero-emission zones, where engine propulsion is not allowed. Navigation data represent an essential element in the achievement of these tasks. With this aim, a novel simulation and testing environment has been developed during the PhD research activity, as an effective tool to retrieve routing information from map service providers via vehicle-to-everything connectivity. Comparisons between the developed and the reference strategies are made, as well, in order to assess their impact on the vehicle energy consumption. All the activities presented in this doctoral dissertation have been carried out at the Green Mobility Research Lab} (GMRL), a research center resulting from the partnership between the University of Bologna and FEV Italia s.r.l., which represents the industrial partner of the research project.
Resumo:
Nowadays the development of new Internal Combustion Engines is mainly driven by the need to reduce tailpipe emissions of pollutants, Green-House Gases and avoid the fossil fuels wasting. The design of dimension and shape of the combustion chamber together with the implementation of different injection strategies e.g., injection timing, spray targeting, higher injection pressure, play a key role in the accomplishment of the aforementioned targets. As far as the match between the fuel injection and evaporation and the combustion chamber shape is concerned, the assessment of the interaction between the liquid fuel spray and the engine walls in gasoline direct injection engines is crucial. The use of numerical simulations is an acknowledged technique to support the study of new technological solutions such as the design of new gasoline blends and of tailored injection strategies to pursue the target mixture formation. The current simulation framework lacks a well-defined best practice for the liquid fuel spray interaction simulation, which is a complex multi-physics problem. This thesis deals with the development of robust methodologies to approach the numerical simulation of the liquid fuel spray interaction with walls and lubricants. The accomplishment of this task was divided into three tasks: i) setup and validation of spray-wall impingement three-dimensional CFD spray simulations; ii) development of a one-dimensional model describing the liquid fuel – lubricant oil interaction; iii) development of a machine learning based algorithm aimed to define which mixture of known pure components mimics the physical behaviour of the real gasoline for the simulation of the liquid fuel spray interaction.
Progetto di Sistemi di Regolazione dell'Alimentazione ad Alta Affidabilità per Processori Multi-Core
Resumo:
Quasi tutti i componenti del FIVR (regolatore di tensione Buck che fornisce l'alimentazione ai microprocessori multi-core) sono implementati sul die del SoC e quindi soffrono di problemi di affidabilità associati allo scaling della tecnologia microelettronica. In particolare, la variazione dei parametri di processo durante la fabbricazione e i guasti nei dispostivi di switching (circuiti aperti o cortocircuiti). Questa tesi si svolge in ambito di un progetto di ricerca in collaborazione con Intel Corporation, ed è stato sviluppato in due parti: Inizialmente è stato arricchito il lavoro di analisi dei guasti su FIVR, svolgendo un accurato studio su quelli che sono i principali effetti dell’invecchiamento sulle uscite dei regolatori di tensione integrati su chip. Successivamente è stato sviluppato uno schema di monitoraggio a basso costo in grado di rilevare gli effetti dei guasti più probabili del FIVR sul campo. Inoltre, lo schema sviluppato è in grado di rilevare, durante il tempo di vita del FIVR, gli effetti di invecchiamento che inducono un incorretto funzionamento del FIVR. Lo schema di monitoraggio è stato progettato in maniera tale che risulti self-checking nei confronti dei suoi guasti interni, questo per evitare che tali errori possano compromettere la corretta segnalazione di guasti sul FIVR.
Resumo:
We address the problem of automotive cybersecurity from the point of view of Threat Analysis and Risk Assessment (TARA). The central question that motivates the thesis is the one about the acceptability of risk, which is vital in taking a decision about the implementation of cybersecurity solutions. For this purpose, we develop a quantitative framework in which we take in input the results of risk assessment and define measures of various facets of a possible risk response; we then exploit the natural presence of trade-offs (cost versus effectiveness) to formulate the problem as a multi-objective optimization. Finally, we develop a stochastic model of the future evolution of the risk factors, by means of Markov chains; we adapt the formulations of the optimization problems to this non-deterministic context. The thesis is the result of a collaboration with the Vehicle Electrification division of Marelli, in particular with the Cybersecurity team based in Bologna; this allowed us to consider a particular instance of the problem, deriving from a real TARA, in order to test both the deterministic and the stochastic framework in a real world application. The collaboration also explains why in the work we often assume the point of view of a tier-1 supplier; however, the analyses performed can be adapted to any other level of the supply chain.
Resumo:
In the field of bone substitutes is highly researched an innovative material able to fill gaps with high mechanical performances and able to stimulate cell response, permitting the complete restoration of the bone portion. In this respect, the synthesis of new bioactive materials able to mimic the compositional, morphological and mechanical features of bone is considered as the elective approach for effective tissue regeneration. Hydroxyapatite (HA) is the main component of the inorganic part of bone. Additionally ionic substitution can be performed in the apatite lattice producing different effects, depending from the selected ions. Magnesium, in substitution of calcium, and carbonate, in substitution of phosphate, extensively present in the biological bones, are able to improve properties naturally present in the apatitic phase, (i.e. biomimicry, solubility e osteoinductive properties). Other ions can be used to give new useful properties, like antiresorptive or antimicrobial properties, to the apatitic phase. This thesis focused on the development of hydroxyapatite nanophases with multiple ionic substitutions including gallium, or zinc ions, in association with magnesium and carbonate, with the purpose to provide double synergistic functionality as osteogenic and antibacterial biomaterial. Were developed bioactive materials based on Sr-substituted hydroxyapatite in the form of sintered targets. The obtained targets were treated with Pulsed Plasma Deposition (PED) resulting in the deposition of thin film coatings able to improve the roughness and wettability of PEEK, enhancing its osteointegrability. Were investigated heterogeneous gas-solid reactions, addressed to the biomorphic transformations of natural 3D porous structures into bone scaffolds with biomimetic composition and hierarchical organization, for application in load-bearing sites. The kinetics of the different reactions of the process were optimized to achieve complete and controlled phase transformation, maintaining the original 3-D morphology. Massive porous scaffolds made of ion-substituted hydroxyapatite and bone-mimicking structure were developed and tested in 3-D cell culture models.
Resumo:
In this thesis, a thorough investigation on acoustic noise control systems for realistic automotive scenarios is presented. The thesis is organized in two parts dealing with the main topics treated: Active Noise Control (ANC) systems and Virtual Microphone Technique (VMT), respectively. The technology of ANC allows to increase the driver's/passenger's comfort and safety exploiting the principle of mitigating the disturbing acoustic noise by the superposition of a secondary sound wave of equal amplitude but opposite phase. Performance analyses of both FeedForwrd (FF) and FeedBack (FB) ANC systems, in experimental scenarios, are presented. Since, environmental vibration noises within a car cabin are time-varying, most of the ANC solutions are adaptive. However, in this work, an effective fixed FB ANC system is proposed. Various ANC schemes are considered and compared with each other. In order to find the best possible ANC configuration which optimizes the performance in terms of disturbing noise attenuation, a thorough research of \gls{KPI}, system parameters and experimental setups design, is carried out. In the second part of this thesis, VMT, based on the estimation of specific acoustic channels, is investigated with the aim of generating a quiet acoustic zone around a confined area, e.g., the driver's ears. Performance analysis and comparison of various estimation approaches is presented. Several measurement campaigns were performed in order to acquire a sufficient duration and number of microphone signals in a significant variety of driving scenarios and employed cars. To do this, different experimental setups were designed and their performance compared. Design guidelines are given to obtain good trade-off between accuracy performance and equipment costs. Finally, a preliminary analysis with an innovative approach based on Neural Networks (NNs) to improve the current state of the art in microphone virtualization is proposed.
Resumo:
High Energy efficiency and high performance are the key regiments for Internet of Things (IoT) end-nodes. Exploiting cluster of multiple programmable processors has recently emerged as a suitable solution to address this challenge. However, one of the main bottlenecks for multi-core architectures is the instruction cache. While private caches fall into data replication and wasting area, fully shared caches lack scalability and form a bottleneck for the operating frequency. Hence we propose a hybrid solution where a larger shared cache (L1.5) is shared by multiple cores connected through a low-latency interconnect to small private caches (L1). However, it is still limited by large capacity miss with a small L1. Thus, we propose a sequential prefetch from L1 to L1.5 to improve the performance with little area overhead. Moreover, to cut the critical path for better timing, we optimized the core instruction fetch stage with non-blocking transfer by adopting a 4 x 32-bit ring buffer FIFO and adding a pipeline for the conditional branch. We present a detailed comparison of different instruction cache architectures' performance and energy efficiency recently proposed for Parallel Ultra-Low-Power clusters. On average, when executing a set of real-life IoT applications, our two-level cache improves the performance by up to 20% and loses 7% energy efficiency with respect to the private cache. Compared to a shared cache system, it improves performance by up to 17% and keeps the same energy efficiency. In the end, up to 20% timing (maximum frequency) improvement and software control enable the two-level instruction cache with prefetch adapt to various battery-powered usage cases to balance high performance and energy efficiency.
Resumo:
Le conseguenze del management algoritmico sui lavoratori sono note tra gli studiosi, ma poche ricerche indagano le possibilità di agency, soprattutto a livello individuale, nella gig-economy. A partire dalla quotidianità del lavoro, l’obiettivo è analizzare le forme di agency esercitate dai platform workers nel settore della logistica dell'ultimo miglio. La ricerca si basa su un'etnografia multi-situata condotta in due paesi molto distanti e riguardante due diversi servizi urbani di piattaforma: il food-delivery in Italia (Bologna, Torino) e il ride-hailing in Argentina (Buenos Aires). Nonostante le differenze, il lavoro di campo ha mostrato diverse continuità tra i contesti geografici. Innanzitutto, le tecnologie digitali giocano un ruolo ambivalente nell'ambiente di lavoro: se la tecnologia è usata dalle aziende per disciplinare il lavoro, costituisce però anche uno strumento che può essere impiegato a vantaggio dei lavoratori. Sia nel ride-hailing che nelle piattaforme di food-delivery, infatti, i lavoratori esprimono la loro agency condividendo pratiche di rimaneggiamento e tattiche per aggirare il despotismo algoritmico. In secondo luogo, la ricerca ha portato alla luce una gran varietà di attività economiche sviluppate ai margini dell'economia di piattaforma. In entrambi i casi le piattaforme intersecano vivacemente le economie informali urbane e alimentano circuiti informali di lavoro, come evidenziato dall'elevata presenza di scambi illeciti: ad esempio, vendita di account, hacking-bots, caporalato digitale. Tutt'altro che avviare un processo di formalizzazione, quindi, la piattaforma sussume e riproduce l’insieme di condizioni produttive e riproduttive dell'informalità (viração), offrendo impieghi intermittenti e insicuri a una massa di lavoratori-usa-e-getta disponibile al sottoimpiego. In conclusione, le piattaforme vengono definite come infrastrutture barocche, intendendo con il barocco tanto la natura ibrida dell'azione che mescola forme di neoliberismo-dal-basso con pratiche di solidarietà tra pari, quanto la progressiva ristrutturazione dei processi di accumulazione all’insegna di una rinnovata interdipendenza tra formale e informale nelle infrastrutture del «mondo a domicilio».
Resumo:
Modern networks are undergoing a fast and drastic evolution, with software taking a more predominant role. Virtualization and cloud-like approaches are replacing physical network appliances, reducing the management burden of the operators. Furthermore, networks now expose programmable interfaces for fast and dynamic control over traffic forwarding. This evolution is backed by standard organizations such as ETSI, 3GPP, and IETF. This thesis will describe which are the main trends in this evolution. Then, it will present solutions developed during the three years of Ph.D. to exploit the capabilities these new technologies offer and to study their possible limitations to push further the state-of-the-art. Namely, it will deal with programmable network infrastructure, introducing the concept of Service Function Chaining (SFC) and presenting two possible solutions, one with Openstack and OpenFlow and the other using Segment Routing and IPv6. Then, it will continue with network service provisioning, presenting concepts from Network Function Virtualization (NFV) and Multi-access Edge Computing (MEC). These concepts will be applied to network slicing for mission-critical communications and Industrial IoT (IIoT). Finally, it will deal with network abstraction, with a focus on Intent Based Networking (IBN). To summarize, the thesis will include solutions for data plane programming with evaluation on well-known platforms, performance metrics on virtual resource allocations, novel practical application of network slicing on mission-critical communications, an architectural proposal and its implementation for edge technologies in Industrial IoT scenarios, and a formal definition of intent using a category theory approach.
Resumo:
Understanding why market manipulation is conducted, under which conditions it is the most profitable and investigating the magnitude of these practices are crucial questions for financial regulators. Closing price manipulation induced by derivatives’ expiration is the primary subject of this thesis. The first chapter provides a mathematical framework in continuous time to study the incentive to manipulate a set of securities induced by a derivative position. An agent holding a European-type contingent claim, depending on the price of a basket of underlying securities, is considered. The agent can affect the price of the underlying securities by trading on each of them before expiration. The elements of novelty are at least twofold: (1) a multi-asset market is considered; (2) the problem is solved by means of both classic optimisation and stochastic control techniques. Both linear and option payoffs are considered. In the second chapter an empirical investigation is conducted on the existence of expiration day effects on the UK equity market. Intraday data on FTSE 350 stocks over a six-year period from 2015-2020 are used. The results show that the expiration of index derivatives is associated with a rise in both trading activity and volatility, together with significant price distortions. The expiration of single stock options appears to have little to no impact on the underlying securities. The last chapter examines the existence of patterns in line with closing price manipulation of UK stocks on option expiration days. The main contributions are threefold: (1) this is one of the few empirical studies on manipulation induced by the options market; (2) proprietary equity orderbook and transaction data sets are used to define manipulation proxies, providing a more detailed analysis; (3) the behaviour of proprietary trading firms is studied. Despite the industry concerns, no evidence is found of this type of manipulative behaviour.