926 resultados para Vegetation regeneration
Resumo:
The intervertebral disc (IVD) is a complex avascular organ of viscoelastic properties. The current research focus is to regenerate and to partially restore a degenerated IVD by ‘smart’ biomaterials in combination of cell therapy and/or growth factors. For the two tissues of the IVD, that is, the nucleus pulposus (NP) and the annulus fibrosus (AF), biomaterials of different mechanical properties are needed. The ideal biomaterial to restore the water-rich NP and the tensile-force resistant AF has not been identified yet. The lack of blood vessels and the relative scarcity of specially adapted cells of the IVD organ demand novel concepts of tissue-engineered biological approaches to regenerate or replace the IVD. Injectable biodegradable hydrogels with swelling properties are in focus for NP replacement, whereas electrospun biphasic composites and silk, among other biodegradable polymers, are discussed for AF reinforcement.
Resumo:
The "gold standard" for treatment of intervertebral disc herniations and degenerated discs is still spinal fusion, corresponding to the saying "no disc - no pain". Mechanical prostheses, which are currently implanted, do only have medium outcome success and have relatively high re-operation rates. Here, we discuss some of the biological intervertebral disc replacement approaches, which can be subdivided into at least two classes in accordance to the two different tissue types, the nucleus pulposus (NP) and the annulus fibrosus (AF). On the side of NP replacement hydrogels have been extensively tested in vitro and in vivo. However, these gels are usually a trade-off between cell biocompatibility and load-bearing capacity, hydrogels which fulfill both are still lacking. On the side of AF repair much less is known and the question of the anchoring of implants is still to be addressed. New hope for cell therapy comes from developmental biology investigations on the existence of intervertebral disc progenitor cells, which would be an ideal cell source for cell therapy. Also notochordal cells (remnants of the embryonic notochord) have been recently pushed back into focus since these cells have regenerative potential and can activate disc cells. Growth factor treatment and molecular therapies could be less problematic. The biological solutions for NP and AF replacement are still more fiction than fact. However, tissue engineering just scratched the tip of the iceberg, more satisfying solutions are yet to be added to the biomedical pipeline.
Resumo:
In order to infer reactions of treeline and alpine vegetation to climatic change, past vegetation changes are reconstructed on the basis of pollen, macrofossil and charcoal analysis. The sampled sediment cores originate from the small pond Emines, located at the Sanetsch Pass (connecting the Valais and Bern, Switzerland) at an altitude of 2288 m a.s.l. Today's treeline is at ca. 2200 m a.s.l. in the area, though due to special pass (saddle) conditions it is locally depressed to ca. 2060 m a.s.l. Our results reveal that the area around Emines was covered by treeless alpine vegetation during most of the past 12,000 years. Single individuals of Betula, Larix decidua and possibly Pinus cembra occurred during the Holocene. Major centennial to millennial-scale responses of treeline vegetation to climatic changes are evident. However, alpine vegetation composition remained rather stable between 11,500 and 6000 cal. BP, showing that Holocene climatic changes of +/− 1 °C hardly influenced the local vegetation at Emines. The rapid warming of 3–4 °C at the Late Glacial/Holocene transition (11,600 cal. BP) caused significant altitudinal displacements of alpine species that were additionally affected by the rapid upward movement of trees and shrubs. Since the beginning of the Neolithic, vegetation changes at Sanetsch Pass resulted from a combination of climate change and human impact. Anthropogenic fire increase and land-use change combined with a natural change from subcontinental to more oceanic climate during the second half of the Holocene led to the disappearance of P. cembra in the study area, but favoured the occurrence of Picea abies and Alnus viridis. The mid- to late-Holocene decline of Abies alba was primarily a consequence of human impact, since this mesic species should have benefitted from a shift to more oceanic conditions. Future alpine vegetation changes will be a function of the amplitude and rapidity of global warming as well as human land use. Our results imply that alpine vegetation at our treeline pass site was never replaced by forests since the last ice-age. This may change in the future if anticipated climate change will induce upslope migration of trees. The results of this study emphasise the necessity of climate change mitigation in order to prevent biodiversity losses as a consequence of unprecedented community and species displacement in response to climatic change.
Resumo:
Fungi are important members of soil microbial communities with a crucial role in biogeochemical processes. Although soil fungi are known to be highly diverse, little is known about factors influencing variations in their diversity and community structure among forests dominated by the same tree species but spread over different regions and under different managements. We analyzed the soil fungal diversity and community composition of managed and unmanaged European beech dominated forests located in three German regions, the Schwäbische Alb in Southwestern, the Hainich-Dün in Central and the Schorfheide Chorin in the Northeastern Germany, using internal transcribed spacer (ITS) rDNA pyrotag sequencing. Multiple sequence quality filtering followed by sequence data normalization revealed 1655 fungal operational taxonomic units. Further analysis based on 722 abundant fungal OTUs revealed the phylum Basidiomycota to be dominant (54%) and its community to comprise 71.4% of ectomycorrhizal taxa. Fungal community structure differed significantly (p≤0.001) among the three regions and was characterized by non-random fungal OTUs co-occurrence. Soil parameters, herbaceous understory vegetation, and litter cover affected fungal community structure. However, within each study region we found no difference in fungal community structure between management types. Our results also showed region specific significant correlation patterns between the dominant ectomycorrhizal fungal genera. This suggests that soil fungal communities are region-specific but nevertheless composed of functionally diverse and complementary taxa.