999 resultados para Vegetal regulation
Resumo:
In the last number of years the management of the dangerous in the community, particularly sex offenders, has generated enormous concern. This concern has been reflected at a number of different levels - in media and popular responses to the risk posed by released sex offenders in the community and in official discourses where an abundance of legislation and policy reforms have been enacted within a relatively short period of time. This analysis seeks to critically evaluate these developments within the context of contemporary criminal justice policy and practice in relation to the management of sex offenders in the community. The article analyses the contemporary focus on risk management or preventative governance which underpins the current regulatory framework and has been reflected in both the sentencing options and in control in the community initiatives for sex offenders. In this respect, the article highlights the gap between policy and practice in terms of the effective risk management of sex offenders. Given the failure of the traditional justice system with respect to these types of offences, it will be argued that the retributive framework could usefully be supplemented by the theory and practice of reintegrative or restorative community justice, and public education in particular, in order to better manage the risk presented by sex offenders in the community.
Resumo:
Purpose: This study aimed to evaluate the effects of endostatin on tight junction (TJ) integrity in retinal microvascular endothelial cells (RMECs) in vitro and in vivo. Moreover, it was hypothesized that endostatin-induced occludin upregulation regulated VEGF(165)-mediated increases in endothelial cell permeability and involved activation of the MAPK signaling cascade. Endostatin is a 20-kDa fragment of collagen XVIII that has been shown to be efficacious in the eye by preventing retinal neovascularization. Endostatin is a specific inhibitor of endothelial cell proliferation, migration, and angiogenesis and has been reported to reverse VEGF-mediated increases in vasopermeability and to promote integrity of the blood-retinal barrier (BRB). In order to determine the mechanism of endostatin action on BRB integrity, we have examined the effects of endostatin on a number of intracellular pathways implicated in endothelial cell physiology. Methods: C57/Bl6 mice were injected with VEGF(165) and/or endostatin, and the distribution of occludin staining was determined using retinal flatmounts. Western blot analysis of RMECs treated with VEGF(165) and/or endostatin was used to determine changes in occludin expression and p38 MAPK and extracellular regulated kinase (ERK1/ERK2 MAPK) activation, while FD-4 flux across the RMEC monolayer was used to determine changes in paracellular permeability. Results: Endostatin prevented the discontinuous pattern of occludin staining observed at the retinal blood vessels of mice administered an intraocular injection of VEGF(165). It was shown that endostatin activated p38 MAPK 5 min after addition to RMECs and continued to do so for approximately 30 min. Endostatin was also shown to activate ERK1/ERK2 5 min after addition and continued to do so, albeit with less potency, up to and including 15 min after addition. Inhibition of p38 MAPK and ERK1/ERK2 prevented endostatin's ability to upregulate levels of occludin expression. Inhibition of these key signaling molecules was shown to prevent endostatin's ability to protect against VEGF(165)- mediated increases in paracellular permeability in vitro. However, it appears that p38 MAPK may play a more important role in VEGF-mediated permeability, as inhibition of ERK1/ERK2 will not prevent VEGF(165)- mediated permeability compared with control ( untreated) cells or cells treated with both a p38 MAPK inhibitor and VEGF(165). Conclusions: Occludin is important for the maintenance of tight junction integrity in vivo. In a p38 MAPK and ERK1/ERK2 dependent manner, endostatin was shown to upregulate the levels of expression of the tight junction protein occludin. Inhibition of these key MAPK components may prevent endostatin's ability to decrease VEGF(165)-induced paracellular permeability.
Resumo:
Acute promyelocytic leukemia (APL) is associated with a reciprocal and balanced translocation involving the retinoic acid receptor-alpha (RARalpha). All-trans retinoic acid (ATRA) is used to treat APL and is a potent morphogen that regulates HOX gene expression in embryogenesis and organogenesis. HOX genes are also involved in hematopoiesis and leukemogenesis. Thirty-nine mammalian HOX genes have been identified and classified into 13 paralogous groups clustered on 4 chromosomes. They encode a complex net-Work of transcription regulatory proteins whose precise targets remain poorly understood. The overall function of the network appears to be dictated by gene dosage. To investigate the mechanisms involved in HOX gene regulation in hematopoiesis and leukemogenesis by precise measurement of individual HOX genes, a small-array real-time HOX (SMART-HOX) quantitative polymerase chain reaction (PCR) platform was designed and validated. Application of SMART-HOX to 16 APL bone marrow samples revealed a global down-regulation of 26 HOX genes compared with normal controls. HOX gene expression was also altered during differentiation induced by ATRA in the PML-RARalpha(+) NB4 cell line. PML-RARalpha, fusion proteins have been reported to act as part of a repressor complex during myelold cell differentiation, and a model linking HOX gene expression to this PML-RARalpha repressor complex is now proposed.
Resumo:
Tigecycline resistance has been attributed to ramA overexpression and subsequent acrA upregulation. The ramA locus, originally identified in Klebsiella pneumoniae, has homologues in Enterobacter and Salmonella spp. In this study, we identify in silico that the ramR binding site is also present in Citrobacter spp. and that Enterobacter, Citrobacter and Klebsiella spp. share key regulatory elements in the control of the romA–ramA locus. RACE (rapid amplification of cDNA ends) mapping indicated that there are two promoters from which romA–ramA expression can be regulated in K. pneumoniae. Correspondingly, electrophoretic binding studies clearly showed that purified RamA and RamR proteins bind to both of these promoters. Hence, there appear to be two RamR binding sites within the Klebsiella romA–ramA locus. Like MarA, RamA binds the promoter region, implying that it might be subject to autoregulation. We have identified changes within ramR in geographically distinct clinical isolates of K. pneumoniae. Intriguingly, levels of romA and ramA expression were not uniformly affected by changes within the ramR gene, thereby supporting the dual promoter finding. Furthermore, a subset of strains sustained no changes within the ramR gene but which still overexpressed the romA–ramA genes, strongly suggesting that a secondary regulator may control ramA expression.
Resumo:
Many reviews have been written on protein kinase B/Akt focusing on its history dating back from the isolation of the Akt8 transforming murine leukemia virus by Staal in 1977, to the co-discovery of the Akt1 gene by the three groups in 1991 (reviewed in 7). There are currently over 22,000 publications in the PubMed database with "Akt" as a keyword - these publications describe a wealth of diverse data on the physiological functions of Akt isoforms. Many of these publications describe roles of Akt ranging from its requirement for cellular processes such as glucose uptake, cell survival and angiogenesis to roles in diseases such as cancer and ischaemia (22). This review will focus on the evidence for Akt signaling in different kidney cells during diabetes, or diabetic nephropathy (DN).
Resumo:
Developmental processes are regulated by the bone morphogenetic protein (BMP) family of secreted molecules. BMPs bind to serine/threonine kinase receptors and signal through the canonical Smad pathway and other intracellular effectors. Integral to the control of BMPs is a diverse group of secreted BMP antagonists that bind to BMPs and prevent engagement with their cognate receptors. Tight temporospatial regulation of both BMP and BMP-antagonist expression provides an exquisite control system for developing tissues. Additional facets of BMP-antagonist biology, such as crosstalk with Wnt and Sonic hedgehog signaling during development, have been revealed in recent years. In addition, previously unappreciated roles for the BMP antagonists in kidney fibrosis and cancer have been elucidated. This review provides a description of BMP-antagonist biology, together with highlights of recent novel insights into the role of these antagonists in development, signal transduction and human disease.