991 resultados para Varying environments
Resumo:
The characterization of thermocouple sensors for temperature measurement in varying-flow environments is a challenging problem. Recently, the authors introduced novel difference-equation-based algorithms that allow in situ characterization of temperature measurement probes consisting of two-thermocouple sensors with differing time constants. In particular, a linear least squares (LS) lambda formulation of the characterization problem, which yields unbiased estimates when identified using generalized total LS, was introduced. These algorithms assume that time constants do not change during operation and are, therefore, appropriate for temperature measurement in homogenous constant-velocity liquid or gas flows. This paper develops an alternative ß-formulation of the characterization problem that has the major advantage of allowing exploitation of a priori knowledge of the ratio of the sensor time constants, thereby facilitating the implementation of computationally efficient algorithms that are less sensitive to measurement noise. A number of variants of the ß-formulation are developed, and appropriate unbiased estimators are identified. Monte Carlo simulation results are used to support the analysis.
Resumo:
Conservators have long been aware of the problems associated with the preservation of rubber objects due to inherent instability that can be attributed, in part, to the presence of additives. Inorganic additives, such as fillers, accelerators, stabilizers, and special ingredients are necessary in manufacturing to alter the properties of natural rubber. These materials all have different interactions with the rubber, and each other, and differing effects on the ageing process. To date, the most effective and accepted methods to preserve rubber are cold, dark storage of objects, or the use of low oxygen environments. While these methods are effective, they greatly limit access. The application of coatings to the surface of rubber objects can slow deterioration and greatly increase the ability of an institution to handle and display rubber objects. While numerous coatings for preventive and interventive treatment have been tested, none have been so successful to warrant routine use. The first section of this research highlighted the relationship between the inclusion of certain additives in natural rubber objects and the accelerated or slowed down overall degradation. In the second part of this research, the acrylic varnishes Golden Polymer Varnish with UVLS, Lascaux Acrylic Transparent Varnish-UV, Sennelier Matte Lacquer with UV Protection, and Liquitex Soluvar Varnish containing ultraviolet light absorbers or stabilizers were tested as a preventative coating for rubber. Through testing the visual and physical properties of the samples, as well as compound analysis the results of this research suggest that acrylic varnishes do provide protection, each to varying degrees. The results also provided insight into the behavior of rubber and these varnishes with continuing light exposure.
Copper uptake by four Elsholtzia ecotypes supplied with varying levels of copper in solution culture
Resumo:
Weathering studies have often sought to explain features in terms of a prevailing set of environmental conditions. However, it is clear that in most present-day hot desert regions, the surface rock debris has been exposed to a range of weathering environments and processes. These different weathering conditions can arise in two ways, either from the effects of long-term climate change acting on debris that remains relatively static within the landscape or through the spatial relocation of debris from high to low altitude. Consequently, each fragment of rock may contain a unique weathering-related legacy of damage and alteration — a legacy that may greatly influence its response to present-day weathering activity. Experiments are described in which blocks of limestone, sandstone, granite and basalt are given ‘stress histories’ by subjecting them to varying numbers of heating and freezing cycles as a form of pre-treatment. These imposed stress histories act as proxies for a weathering history. Some blocks were used in a laboratory salt weathering simulation study while others underwent a 2 year field exposure trial at high, mid and low altitude sites in Death Valley, California. Weight loss and ultrasonic pulse velocity measurements suggest that blocks with stress histories deteriorate more rapidly than unstressed samples of the same rock type exposed to the same environmental conditions. Laboratory data also indicate that the result of imposing a known ‘weathering history’ on samples by pre-stressing them is an increase in the amount of fine sediment released during salt weathering over a given period of time in comparison to unstressed samples.
Resumo:
Winter is energetically challenging for small herbivores because of greater energy requirements for thermogenesis at a time when little energy is available. We formulated a model predicting optimal wintering body size, accounting for the scaling of both energy expenditure and assimilation to body size, and the trade-off between survival benefits of a large size and avoiding survival costs of foraging. The model predicts that if the energy cost of maintaining a given body mass differs between environments, animals should be smaller in the more demanding environments, and there should be a negative correlation between body mass and daily energy expenditure (DEE) across environments. In contrast, if animals adjust their energy intake according to variation in survival costs of foraging, there should be a positive correlation between body mass and DEE. Decreasing temperature always increases equilibrium DEE, but optimal body mass may either increase or decrease in colder climates depending on the exact effects of temperature on mass-specific survival and energy demands. Measuring DEE with doubly labeled water on wintering Microtus agrestis at four field sites, we found that DEE was highest at the sites where voles were smallest despite a positive correlation between DEE and body mass within sites. This suggests that variation in wintering body mass between sites was due to variation in food quality/availability and not adjustments in foraging activity to varying risks of predation.