922 resultados para University Authors
Resumo:
Car Following models have a critical role in all microscopic traffic simulation models. Current microscopic simulation models are unable to mimic the unsafe behaviour of drivers as most are based on presumptions about the safe behaviour of drivers. Gipps model is a widely used car following model embedded in different micro-simulation models. This paper examines the Gipps car following model to investigate ways of improving the model for safety studies application. The paper puts forward some suggestions to modify the Gipps model to improve its capabilities to simulate unsafe vehicle movements (vehicles with safety indicators below critical thresholds). The result of the paper is one step forward to facilitate assessing and predicting safety at motorways using microscopic simulation. NGSIM as a rich source of vehicle trajectory data for a motorway is used to extract its relatively risky events. Short following headways and Time To Collision are used to assess critical safety event within traffic flow. The result shows that the modified proposed car following to a certain extent predicts the unsafe trajectories with smaller error values than the generic Gipps model.
Resumo:
Any incident on motorways potentially can be followed by secondary crashes. Rear-end crashes also could happen as a result of queue formation downstream of high speed platoons. To decrease the occurrence of secondary crashes and rear-end crashes, Variable Speed Limits (VSL) can be applied to protect queue formed downstream. This paper focuses on fine tuning the Queue Protection algorithm of VSL. Three performance indicators: activation time, deactivation time and number of false alarms are selected to optimise the Queue Protection algorithm. A calibrated microscopic traffic simulation model of Pacific Motorway in Brisbane is used for the optimisation. Performance of VSL during an incident and heavy congestion and the benefit of VSL will be presented in the paper.
Resumo:
This important work describes recent theoretical advances in the study of artificial neural networks. It explores probabilistic models of supervised learning problems, and addresses the key statistical and computational questions. Chapters survey research on pattern classification with binary-output networks, including a discussion of the relevance of the Vapnik Chervonenkis dimension, and of estimates of the dimension for several neural network models. In addition, Anthony and Bartlett develop a model of classification by real-output networks, and demonstrate the usefulness of classification with a "large margin." The authors explain the role of scale-sensitive versions of the Vapnik Chervonenkis dimension in large margin classification, and in real prediction. Key chapters also discuss the computational complexity of neural network learning, describing a variety of hardness results, and outlining two efficient, constructive learning algorithms. The book is self-contained and accessible to researchers and graduate students in computer science, engineering, and mathematics
Resumo:
The paper presents a demand side response scheme,which assists electricity consumers to proactively control own demands in such a way to deliberately avert congestion periods on the electrical network. The scheme allows shifting loads from peak to low demand periods in an attempt to flattening the national electricity requirement. The scheme can be concurrently used to accommodate the utilization of renewable energy sources,that might be available at user’s premises. In addition the scheme allows a full-capacity utilization of the available electrical infrastructure by organizing a wide-use of electric vehicles. The scheme is applicable in the Eastern and Southern States of Australia managed by the Australian Energy Market Operator. The results indicate the potential of the scheme to achieve energy savings and release capacity to accommodate renewable energy and electrical vehicle technologies.
Resumo:
The reduction of CO2 emissions and social exclusion are two key elements of UK transport strategy. Despite intensive research on each theme, little effort has so far been made linking the relationship between emissions and social exclusion. In addition, current knowledge on each theme is limited to urban areas; little research is available on these themes for rural areas. This research contributes to this gap in the literature by analysing 157 weekly activity-travel diary data collected from three case study areas with differential levels of area accessibility and area mobility options, located in rural Northern Ireland. Individual weekly CO2 emission levels from personal travel diaries (both hot exhaust emission and cold-start emission) were calculated using average speed models for different modes of transport. The socio-spatial patterns associated with CO2 emissions were identified using a general linear model whereas binary logistic regression analyses were conducted to identify mode choice behaviour and activity patterns. This research found groups that emitted a significantly lower level of CO2 included individuals living in an area with a higher level of accessibility and mobility, non-car, non-working, and low-income older people. However, evidence in this research also shows that although certain groups (e.g. those working, and residing in an area with a lower level of accessibility) emitted higher levels of CO2, their rate of participation in activities was however found to be significantly lower compared to their counterparts. Based on the study findings, this research highlights the need for both soft (e.g. teleworking) and physical (e.g. accessibility planning) policy measures in rural areas in order to meet government’s stated CO2 reduction targets while at the same time enhancing social inclusion.
Resumo:
Recent research on multiple kernel learning has lead to a number of approaches for combining kernels in regularized risk minimization. The proposed approaches include different formulations of objectives and varying regularization strategies. In this paper we present a unifying general optimization criterion for multiple kernel learning and show how existing formulations are subsumed as special cases. We also derive the criterion's dual representation, which is suitable for general smooth optimization algorithms. Finally, we evaluate multiple kernel learning in this framework analytically using a Rademacher complexity bound on the generalization error and empirically in a set of experiments.
Resumo:
In this paper we examine the problem of prediction with expert advice in a setup where the learner is presented with a sequence of examples coming from different tasks. In order for the learner to be able to benefit from performing multiple tasks simultaneously, we make assumptions of task relatedness by constraining the comparator to use a lesser number of best experts than the number of tasks. We show how this corresponds naturally to learning under spectral or structural matrix constraints, and propose regularization techniques to enforce the constraints. The regularization techniques proposed here are interesting in their own right and multitask learning is just one application for the ideas. A theoretical analysis of one such regularizer is performed, and a regret bound that shows benefits of this setup is reported.
Resumo:
We demonstrate a modification of the algorithm of Dani et al for the online linear optimization problem in the bandit setting, which allows us to achieve an O( \sqrt{T ln T} ) regret bound in high probability against an adaptive adversary, as opposed to the in expectation result against an oblivious adversary of Dani et al. We obtain the same dependence on the dimension as that exhibited by Dani et al. The results of this paper rest firmly on those of Dani et al and the remarkable technique of Auer et al for obtaining high-probability bounds via optimistic estimates. This paper answers an open question: it eliminates the gap between the high-probability bounds obtained in the full-information vs bandit settings.
Resumo:
Kernel-based learning algorithms work by embedding the data into a Euclidean space, and then searching for linear relations among the embedded data points. The embedding is performed implicitly, by specifying the inner products between each pair of points in the embedding space. This information is contained in the so-called kernel matrix, a symmetric and positive definite matrix that encodes the relative positions of all points. Specifying this matrix amounts to specifying the geometry of the embedding space and inducing a notion of similarity in the input space -- classical model selection problems in machine learning. In this paper we show how the kernel matrix can be learned from data via semi-definite programming (SDP) techniques. When applied to a kernel matrix associated with both training and test data this gives a powerful transductive algorithm -- using the labelled part of the data one can learn an embedding also for the unlabelled part. The similarity between test points is inferred from training points and their labels. Importantly, these learning problems are convex, so we obtain a method for learning both the model class and the function without local minima. Furthermore, this approach leads directly to a convex method to learn the 2-norm soft margin parameter in support vector machines, solving another important open problem. Finally, the novel approach presented in the paper is supported by positive empirical results.
Resumo:
Hybrid system representations have been applied to many challenging modeling situations. In these hybrid system representations, a mixture of continuous and discrete states is used to capture the dominating behavioural features of a nonlinear, possible uncertain, model under approximation. Unfortunately, the problem of how to best design a suitable hybrid system model has not yet been fully addressed. This paper proposes a new joint state measurement relative entropy rate based approach for this design purpose. Design examples and simulation studies are presented which highlight the benefits of our proposed design approaches.
Resumo:
This study determines whether the inclusion of low-cost airlines in a dataset of international and domestic airlines has an impact on the efficiency scores of so-called ‘prestigious’ purportedly ‘efficient’ airlines. This is because while many airline studies concern efficiency, none has truly included a combination of international, domestic and budget airlines. The present study employs the nonparametric technique of data envelopment analysis (DEA) to investigate the technical efficiency of 53 airlines in 2006. The findings reveal that the majority of budget airlines are efficient relative to their more prestigious counterparts. Moreover, most airlines identified as inefficient are so largely because of the overutilization of non-flight assets.
Resumo:
This thesis reports on a study in which research participants, four mature aged females starting an undergraduate degree at a regional Australian university, collaborated with the researcher in co-constructing a self-efficacy narrative. For the purpose of the study, self-efficacy was conceptualized as a means by which an individual initiates action to engage in a task or set of tasks, applies effort to perform the task or set of tasks, and persists in the face of obstacles encountered in order to achieve successful completion of the task or set of tasks. Qualitative interviews were conducted with the participants, initially investigating their respective life histories for an understanding of how they made the decision to embark on their respective academic program. Additional data were generated from a written exercise, prompting participants to furnish specific examples of self-efficacy. These data were incorporated into the individual's self-efficacy narrative, produced as the outcome of the "narrative analysis". Another aspect of the study entailed "analysis of narrative" in which analytic procedures were used to identify themes common to the self-efficacy narratives. Five main themes were identified: (a) participants' experience of schooling . for several participants their formative experience of school was not always positive, and yet their narratives demonstrated their agency in persevering and taking on university-level studies as mature aged persons; (b) recognition of family as an early influence . these influences were described as being both positive, in the sense of being supportive and encouraging, as well as posing obstacles that participants had to overcome in order to pursue their goals; (c) availability of supportive persons – the support of particular persons was acknowledged as a factor that enabled participants to persist in their respective endeavours; (d) luck or chance factors were recognised as placing participants at the right place at the right time, from which circumstances they applied considerable effort in order to convert the opportunity into a successful outcome; and (e) self-efficacy was identified as a major theme found in the narratives. The study included an evaluation of the research process by participants. A number of themes were identified in respect of the manner in which the research process was experienced as a helpful process. Participants commented that: (a) the research process was helpful in clarifying their respective career goals; (b) they appreciated opportunities provided by the research process to view their life from a different perspective and to better understand what motivated them, and what their preferred learning styles were; (c) their past successes in a range of different spheres were made more evident to them as they were guided in self-reflection, and their self-efficacious behaviour was affirmed; and (d) the opportunities provided by their participation in the research process to identify strengths of which they had not been consciously aware, to find confirmation of strengths they knew they possessed, and in some instances to rectify misconceptions they had held about aspects of their personality. The study made three important contributions to knowledge. Firstly, it provided a detailed explication of a qualitative narrative method in exploring self-efficacy, with the potential for application to other issues in educational, counselling and psychotherapy research. Secondly, it consolidated and illustrated social cognitive theory by proposing a dynamic model of self-efficacy, drawing on constructivist and interpretivist paradigms and extending extant theory and models. Finally, the study made a contribution to the debate concerning the nexus of qualitative research and counselling by providing guidelines for ethical practice in both endeavours for the practitioner-researcher.
Resumo:
This report provides an account of the first large-scale scoping study of work integrated learning (WIL) in contemporary Australian higher education. The explicit aim of the project was to identify issues and map a broad and growing picture of WIL across Australia and to identify ways of improving the student learning experience in relation to WIL. The project was undertaken in response to high levels of interest in WIL, which is seen by universities both as a valid pedagogy and as a means to respond to demands by employers for work-ready graduates, and demands by students for employable knowledge and skills. Over a period of eight months of rapid data collection, 35 universities and almost 600 participants contributed to the project. Participants consistently reported the positive benefits of WIL and provided evidence of commitment and innovative practice in relation to enhancing student learning experiences. Participants provided evidence of strong partnerships between stakeholders and highlighted the importance of these relationships in facilitating effective learning outcomes for students. They also identified a range of issues and challenges that face the sector in growing WIL opportunities; these issues and challenges will shape the quality of WIL experiences. While the majority of comments focused on issues involved in ensuring quality placements, it was recognised that placements are just one way to ensure the integration of work with learning. Also, the WIL experience is highly contextualised and impacted by the expectations of students, employers, the professions, the university and government policy.
Resumo:
This paper establishes a practical stability result for discrete-time output feedback control involving mismatch between the exact system to be stabilised and the approximating system used to design the controller. The practical stability is in the sense of an asymptotic bound on the amount of error bias introduced by the model approximation, and is established using local consistency properties of the systems. Importantly, the practical stability established here does not require the approximating system to be of the same model type as the exact system. Examples are presented to illustrate the nature of our practical stability result.
Resumo:
The flood flow in urbanised areas constitutes a major hazard to the population and infrastructure as seen during the summer 2010-2011 floods in Queensland (Australia). Flood flows in urban environments have been studied relatively recently, although no study considered the impact of turbulence in the flow. During the 12-13 January 2011 flood of the Brisbane River, some turbulence measurements were conducted in an inundated urban environment in Gardens Point Road next to Brisbane's central business district (CBD) at relatively high frequency (50 Hz). The properties of the sediment flood deposits were characterised and the acoustic Doppler velocimeter unit was calibrated to obtain both instantaneous velocity components and suspended sediment concentration in the same sampling volume with the same temporal resolution. While the flow motion in Gardens Point Road was subcritical, the water elevations and velocities fluctuated with a distinctive period between 50 and 80 s. The low frequency fluctuations were linked with some local topographic effects: i.e, some local choke induced by an upstream constriction between stairwells caused some slow oscillations with a period close to the natural sloshing period of the car park. The instantaneous velocity data were analysed using a triple decomposition, and the same triple decomposition was applied to the water depth, velocity flux, suspended sediment concentration and suspended sediment flux data. The velocity fluctuation data showed a large energy component in the slow fluctuation range. For the first two tests at z = 0.35 m, the turbulence data suggested some isotropy. At z = 0.083 m, on the other hand, the findings indicated some flow anisotropy. The suspended sediment concentration (SSC) data presented a general trend with increasing SSC for decreasing water depth. During a test (T4), some long -period oscillations were observed with a period about 18 minutes. The cause of these oscillations remains unknown to the authors. The last test (T5) took place in very shallow waters and high suspended sediment concentrations. It is suggested that the flow in the car park was disconnected from the main channel. Overall the flow conditions at the sampling sites corresponded to a specific momentum between 0.2 to 0.4 m2 which would be near the upper end of the scale for safe evacuation of individuals in flooded areas. But the authors do not believe the evacuation of individuals in Gardens Point Road would have been safe because of the intense water surges and flow turbulence. More generally any criterion for safe evacuation solely based upon the flow velocity, water depth or specific momentum cannot account for the hazards caused by the flow turbulence, water depth fluctuations and water surges.