908 resultados para Uncertainty propagation
Resumo:
Researchers in ecology commonly use multivariate analyses (e.g. redundancy analysis, canonical correspondence analysis, Mantel correlation, multivariate analysis of variance) to interpret patterns in biological data and relate these patterns to environmental predictors. There has been, however, little recognition of the errors associated with biological data and the influence that these may have on predictions derived from ecological hypotheses. We present a permutational method that assesses the effects of taxonomic uncertainty on the multivariate analyses typically used in the analysis of ecological data. The procedure is based on iterative randomizations that randomly re-assign non identified species in each site to any of the other species found in the remaining sites. After each re-assignment of species identities, the multivariate method at stake is run and a parameter of interest is calculated. Consequently, one can estimate a range of plausible values for the parameter of interest under different scenarios of re-assigned species identities. We demonstrate the use of our approach in the calculation of two parameters with an example involving tropical tree species from western Amazonia: 1) the Mantel correlation between compositional similarity and environmental distances between pairs of sites, and; 2) the variance explained by environmental predictors in redundancy analysis (RDA). We also investigated the effects of increasing taxonomic uncertainty (i.e. number of unidentified species), and the taxonomic resolution at which morphospecies are determined (genus-resolution, family-resolution, or fully undetermined species) on the uncertainty range of these parameters. To achieve this, we performed simulations on a tree dataset from southern Mexico by randomly selecting a portion of the species contained in the dataset and classifying them as unidentified at each level of decreasing taxonomic resolution. An analysis of covariance showed that both taxonomic uncertainty and resolution significantly influence the uncertainty range of the resulting parameters. Increasing taxonomic uncertainty expands our uncertainty of the parameters estimated both in the Mantel test and RDA. The effects of increasing taxonomic resolution, however, are not as evident. The method presented in this study improves the traditional approaches to study compositional change in ecological communities by accounting for some of the uncertainty inherent to biological data. We hope that this approach can be routinely used to estimate any parameter of interest obtained from compositional data tables when faced with taxonomic uncertainty.
Resumo:
T actitivity in LiPb LiPb mock-up material irradiated in Frascati: measurement and MCNP results
Resumo:
Upwardpropagation of a premixed flame in averticaltubefilled with a very leanmixture is simulated numerically using a single irreversible Arrhenius reaction model with infinitely high activation energy. In the absence of heat losses and preferential diffusion effects, a curved flame with stationary shape and velocity close to those of an open bubble ascending in the same tube is found for values of the fuel mass fraction above a certain minimum that increases with the radius of the tube, while the numerical computations cease to converge to a stationary solution below this minimum mass fraction. The vortical flow of the gas behind the flame and in its transport region is described for tubes of different radii. It is argued that this flow may become unstable when the fuel mass fraction is decreased, and that this instability, together with the flame stretch due to the strong curvature of the flame tip in narrow tubes, may be responsible for the minimum fuel mass fraction. Radiation losses and a Lewis number of the fuel slightly above unity decrease the final combustion temperature at the flame tip and increase the minimum fuel mass fraction, while a Lewis number slightly below unity has the opposite effect.
Resumo:
The prediction of the tritium production is required for handling procedures of samples, safety&maintenance and licensing of the International Fusion Materials Irradiation Facility (IFMIF).
Resumo:
PART I:Cross-section uncertainties under differentneutron spectra. PART II: Processing uncertainty libraries
Resumo:
- Need of Tritium production - Neutronic objectives - The Frascati experiment - Measurements of Tritium activity
Resumo:
Burn-up credit analyses are based on depletion calculations that provide an accurate prediction of spent fuel isotopic contents, followed by criticality calculations to assess keff
Resumo:
To study the propagation of the uncertainty from basic data across different scale and physics phenomena -> through complex coupled multi-physics and multi-scale simulations
Resumo:
This work is aimed to present the main differences of nuclear data uncertainties among three different nuclear data libraries: EAF-2007, EAF-2010 and SCALE-6.0, under different neutron spectra: LWR, ADS and DEMO (fusion)
Resumo:
The accurate prediction of the spent nuclear fuel content is essential for its safe and optimized transportation, storage and management. This isotopic evolution can be predicted using powerful codes and methodologies throughout irradiation as well as cooling time periods. However, in order to have a realistic confidence level in the prediction of spent fuel isotopic content, it is desirable to determine how uncertainties affect isotopic prediction calculations by quantifying their associated uncertainties.
Resumo:
The influence of applying European default traffic values to the making of a noise map was evaluated in a typical environment like Palma de Mallorca. To assess these default traffic values, a first model has been created and compared with measured noise levels. Subsequently a second traffic model, improving the input data used for the first one, has been created and validated according to the deviations. Different methodologies were also examined for collecting model input data that would be of higher quality, by analysing the improvement generated in the reduction in the uncertainty of the noise map introduced by the road traffic noise emission
Resumo:
Nonparametric belief propagation (NBP) is a well-known particle-based method for distributed inference in wireless networks. NBP has a large number of applications, including cooperative localization. However, in loopy networks NBP suffers from similar problems as standard BP, such as over-confident beliefs and possible nonconvergence. Tree-reweighted NBP (TRW-NBP) can mitigate these problems, but does not easily lead to a distributed implementation due to the non-local nature of the required so-called edge appearance probabilities. In this paper, we propose a variation of TRWNBP, suitable for cooperative localization in wireless networks. Our algorithm uses a fixed edge appearance probability for every edge, and can outperform standard NBP in dense wireless networks.
Resumo:
Belief propagation (BP) is a technique for distributed inference in wireless networks and is often used even when the underlying graphical model contains cycles. In this paper, we propose a uniformly reweighted BP scheme that reduces the impact of cycles by weighting messages by a constant ?edge appearance probability? rho ? 1. We apply this algorithm to distributed binary hypothesis testing problems (e.g., distributed detection) in wireless networks with Markov random field models. We demonstrate that in the considered setting the proposed method outperforms standard BP, while maintaining similar complexity. We then show that the optimal ? can be approximated as a simple function of the average node degree, and can hence be computed in a distributed fashion through a consensus algorithm.
Resumo:
Tree-reweighted belief propagation is a message passing method that has certain advantages compared to traditional belief propagation (BP). However, it fails to outperform BP in a consistent manner, does not lend itself well to distributed implementation, and has not been applied to distributions with higher-order interactions. We propose a method called uniformly-reweighted belief propagation that mitigates these drawbacks. After having shown in previous works that this method can substantially outperform BP in distributed inference with pairwise interaction models, in this paper we extend it to higher-order interactions and apply it to LDPC decoding, leading performance gains over BP.
Resumo:
This article proposes a MAS architecture for network diagnosis under uncertainty. Network diagnosis is divided into two inference processes: hypothesis generation and hypothesis confirmation. The first process is distributed among several agents based on a MSBN, while the second one is carried out by agents using semantic reasoning. A diagnosis ontology has been defined in order to combine both inference processes. To drive the deliberation process, dynamic data about the influence of observations are taken during diagnosis process. In order to achieve quick and reliable diagnoses, this influence is used to choose the best action to perform. This approach has been evaluated in a P2P video streaming scenario. Computational and time improvements are highlight as conclusions.