998 resultados para Ultrashort pulses laser Grating
Resumo:
Background. Early identification of pathogens from blood cultures using matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry may optimize the choice of empirical antibiotic therapy in the setting of bloodstream infections. We aimed to assess the impact of this new technology on the use of antibiotic treatment in patients with gram-negative bacteremia. Methods. We conducted a prospective observational study from January to December 2010 to evaluate the sequential and separate impacts of Gram stain reporting and MALDI-TOF bacterial identification performed on blood culture pellets in patients with gram-negative bacteremia. The primary outcome was the impact of MALDI-TOF on empirical antibiotic choice. Results. Among 202 episodes of gram-negative bacteremia, Gram stain reporting had an impact in 42 cases (20.8%). MALDI-TOF identification led to a modification of empirical therapy in 71 of all 202 cases (35.1%), and in 16 of 27 cases (59.3%) of monomicrobial bacteremia caused by AmpC-producing Enterobacteriaceae. The most frequently observed impact was an early appropriate broadening of the antibiotic spectrum in 31 of 71 cases (43.7%). In total, 143 of 165 episodes (86.7%) of monomicrobial bacteremia were correctly identified at genus level by MALDI-TOF. Conclusions. In a low prevalence area for extended spectrum betalactamases (ESBL) and multiresistant gram-negative bacteria, MALDI-TOF performed on blood culture pellets had an impact on the clinical management of 35.1% of all gram-negative bacteremia cases, demonstrating a greater impact than Gram stain reporting. Thus, MALDI-TOF could become a vital second step beside Gram stain in guiding the empirical treatment of patients with bloodstream infection.
Resumo:
The interconnected porosity of the Cr3C2-NiCr coatings obtained by high-velocity oxy fuel spraying is detrimental in corrosion and wear resistance applications. Laser treatments allow sealing of their surfaces through melting and resolidification of a thin superficial layer. A Nd:YAG laser beam was used to irradiate Cr3C2-NiCr coatings either in the continuous wave mode or at different repetition rates in the pulsed one. Results indicated that high peak and low mean laser irradiances are not good, since samples presented deep grooves and an extensive crack network. At low peak and higher mean laser irradiances the surface was molten, and only a few shallow cracks were observed. The interconnected porosity was completely eliminated in a layer up to 80 m thick, formed by large Cr7C3 grains imbedded in a NiCr matrix.
Resumo:
Silver has been demonstrated to be a powerful cationization agent in mass spectrometry (MS) for various olefinic species such as cholesterol and fatty acids. This work explores the utility of metallic silver sputtering on tissue sections for high resolution imaging mass spectrometry (IMS) of olefins by laser desorption ionization (LDI). For this purpose, sputtered silver coating thickness was optimized on an assorted selection of mouse and rat tissues including brain, kidney, liver, and testis. For mouse brain tissue section, the thickness was adjusted to 23 ± 2 nm of silver to prevent ion suppression effects associated with a higher cholesterol and lipid content. On all other tissues, a thickness of at 16 ± 2 nm provided the best desorption/ionization efficiency. Characterization of the species by MS/MS showed a wide variety of olefinic compounds allowing the IMS of different lipid classes including cholesterol, arachidonic acid, docosahexaenoic acid, and triacylglyceride 52:3. A range of spatial resolutions for IMS were investigated from 150 μm down to the high resolution cellular range at 5 μm. The applicability of direct on-tissue silver sputtering to LDI-IMS of cholesterol and other olefinic compounds presents a novel approach to improve the amount of information that can be obtained from tissue sections. This IMS strategy is thus of interest for providing new biological insights on the role of cholesterol and other olefins in physiological pathways or disease.
Resumo:
The graffiti on pottery discovered on the site of Aventicum (Avenches, VD/Switzerland) form the largest corpus of minor inscriptions of the Roman Empire studied until now. Indeed, a total of 1828 graffiti have been found. The reading and the recording of the inscriptions are generally dependent on the state of conservation of the graffito and its support. In numerous cases, only a pale shadow of the inscription is visible, which makes traditional observations, such as visual observations with the naked eye, unsuitable for its decipherment. Consequently, advanced techniques have been applied for enhancing the readability of such inscriptions. In our paper we show the efficiency of 3D laser profilometry as well as high resolution photography as powerful means to decipher illegible engraved inscriptions. The use of such analyses to decipher graffiti on pottery or on other materials enables a better understanding of minor inscriptions and improves the knowledge of the daily life of ancient populations substantially.
Resumo:
Phase sensitive X-ray imaging methods can provide substantially increased contrast over conventional absorption-based imaging and therefore new and otherwise inaccessible information. The use of gratings as optical elements in hard X-ray phase imaging overcomes some of the problems that have impaired the wider use of phase contrast in X-ray radiography and tomography. So far, to separate the phase information from other contributions detected with a grating interferometer, a phase-stepping approach has been considered, which implies the acquisition of multiple radiographic projections. Here we present an innovative, highly sensitive X-ray tomographic phase-contrast imaging approach based on grating interferometry, which extracts the phase-contrast signal without the need of phase stepping. Compared to the existing phase-stepping approach, the main advantages of this new method dubbed "reverse projection" are not only the significantly reduced delivered dose, without the degradation of the image quality, but also the much higher efficiency. The new technique sets the prerequisites for future fast and low-dose phase-contrast imaging methods, fundamental for imaging biological specimens and in vivo studies.
Resumo:
Laser diffraction (LD) provides detailed analysis of particle size distribution. Its application to testing the stability of soil aggregates can assist studies on the aggregation of soils with contrasting electrochemical properties. The objectives of the present work were: (a) to propose a protocol for using LD to study soil aggregation, (b) to study the aggregation of an Acrisol under the influence of different doses and forms of lime. Samples were collected in 2005 from a Brazilian Acrisol that in 1994 had received 0.0; 2.0; 8.5 and 17.0 Mg ha-1 of lime, left on the soil surface or incorporated. Aggregates from 4.76 to 8.00 mm diameters were studied using the traditional method proposed by Kemper & Chepil (1965), with wet sieving, while aggregates from 1.00 to 2.00 mm were studied using a CILAS® laser diffractometer that distinguishes particles ranging from 0.04 to 2,500.00 μm. LD readings were made after six consecutive pre-treatments, using agitation times, a chemical dispersion agent and ultrasound. Mean Weighted Diameter (MWD) and the Aggregate Stability Index (ASI) calculated, using the traditional method does not discriminate the treatments. However, LD is able to produce detailed data on soil aggregation, resulting in indexes of stability of aggregates that are linearly related to the doses of lime applied (MWD: R² = 0.986 and ASI: R² = 0.876). It may be concluded that electrochemical changes in the Brazilian Acrisol resulting from incorporated lime affect the stability of aggregates, increasing stability with increased doses of lime.
Resumo:
Time-dependent correlation functions and the spectrum of the transmitted light are calculated for absorptive optical bistability taking into account phase fluctuations of the driving laser. These fluctuations are modeled by an extended phase-diffusion model which introduces non-Markovian effects. The spectrum is obtained as a superposition of Lorentzians. It shows qualitative differences with respect to the usual calculation in which phase fluctuations of the driving laser are neglected.
Resumo:
A theory is presented to explain the statistical properties of the growth of dye-laser radiation. Results are in agreement with recent experimental findings. The different roles of pump-noise intensity and correlation time are elucidated.
Resumo:
BACKGROUND: Deep burn assessment made by clinical evaluation has an accuracy varying between 60% and 80% and will determine if a burn injury will need tangential excision and skin grafting or if it will be able to heal spontaneously. Laser Doppler Imaging (LDI) techniques allow an improved burn depth assessment but their use is limited by the time-consuming image acquisition which may take up to 6 min per image. METHODS: To evaluate the effectiveness and reliability of a newly developed full-field LDI technology, 15 consecutive patients presenting with intermediate depth burns were assessed both clinically and by FluxExplorer LDI technology. Comparison between the two methods of assessment was carried out. RESULTS: Image acquisition was done within 6 s. FluxEXPLORER LDI technology achieved a significantly improved accuracy of burn depth assessment compared to the clinical judgement performed by board certified plastic and reconstructive surgeons (P < 0.05, 93% of correctly assessed burns injuries vs. 80% for clinical assessment). CONCLUSION: Technological improvements of LDI technology leading to a decreased image acquisition time and reliable burn depth assessment allow the routine use of such devices in the acute setting of burn care without interfering with the patient's treatment. Rapid and reliable LDI technology may assist clinicians in burn depth assessment and may limit the morbidity of burn patients through a minimization of the area of surgical debridement. Future technological improvements allowing the miniaturization of the device will further ease its clinical application.
Resumo:
BACKGROUND AND OBJECTIVE: Theoretically myocardial angiogenesis of laser injury can be further enhanced by the addition of angiogenic growth factors. The influence of the way of administration of these factors on vascular growth around the channels is still unclear. MATERIALS AND METHODS: 18 pigs (mean weight 72 +/- 5.2 kg) were randomized to either triads of transmyocardial laser revascularization (TMLR) channels (group 1, n = 6) or isolated channels (group 2, n = 6), or a control group (n = 6). The animals had injections of bovine bone derived growth factor mixture either in the center of the triads in group 1 or within the channels themselves in group 2. Animals were sacrificed one month later for histological analysis. RESULTS: The vascular densities of myocardial areas within the triads of group 1 and around the channels in group 2 were significantly larger than in the control group: 15.2 +/- 3.7/mm2 and 14.2 +/- 3.5/mm2 respectively vs 5.3 +/- 1.6/mm2 (p < 0.001 for both differences). Differences of densities between group 1 and 2 were not statistically significant (p = 0.6). CONCLUSIONS: In this porcine model, the addition of a bovine bone derived growth factor mixture to TMLR significantly stimulates angiogenesis in the areas adjacent to the channels. The place of injection does not influence the angiogenesis intensity.
Resumo:
To determine self‐consistently the time evolution of particle size and their number density in situ multi‐angle polarization‐sensitive laser light scattering was used. Cross‐polarization intensities (incident and scattered light intensities with opposite polarization) measured at 135° and ex situ transmission electronic microscopy analysis demonstrate the existence of nonspherical agglomerates during the early phase of agglomeration. Later in the particle time development both techniques reveal spherical particles again. The presence of strong cross‐polarization intensities is accompanied by low‐frequency instabilities detected on the scattered light intensities and plasma emission. It is found that the particle radius and particle number density during the agglomeration phase can be well described by the Brownian free molecule coagulation model. Application of this neutral particle coagulation model is justified by calculation of the particle charge whereby it is shown that particles of a few tens of nanometer can be considered as neutral under our experimental conditions. The measured particle dispersion can be well described by a Brownian free molecule coagulation model including a log‐normal particle size distribution.
Resumo:
In this work we study aluminium laser-fired contacts for intrinsic amorphous silicon layers deposited by Hot-Wire CVD. This structure could be used as an alternative low temperature back contact for rear passivated heterojunction solar cells. An infrared Nd:YAG laser (1064 nm) has been used to locally fire the aluminium through the thin amorphous silicon layers. Under optimized laser firing parameters, very low specific contact resistances (ρc ∼ 10 mΩ cm2) have been obtained on 2.8 Ω cm p-type c-Si wafers. This investigation focuses on maintaining the passivation quality of the interface without an excessive increase in the series resistance of the device.
Resumo:
Calcium phosphate coatings, obtained at different deposition rates by pulsed laser deposition with a Nd:YAG laser beam of 355-nm wavelength, were studied. The deposition rate was changed from 0.043 to 1.16 /shot by modification of only the ablated area, maintaining the local fluence constant to perform the ablation process in similar local conditions. Characterization of the coatings was performed by scanning electron microscopy, x-ray diffractometry, and infrared, micro-Raman, and x-ray photoelectron spectroscopy. The coatings showed a compact surface morphology formed by glassy gains with some droplets on them. Only hydroxyapatite (HA) and alpha-tricalcium phosphate (alpha-TCP) peaks were found in the x-ray diffractograms. The relative content of alpha TCP diminished with decreasing deposition rates, and only HA peaks were found for the lowest rate. The origin of alpha TCP is discussed.
Resumo:
The interconnected porosity of the Cr3C2-NiCr coatings obtained by high-velocity oxy fuel spraying is detrimental in corrosion and wear resistance applications. Laser treatments allow sealing of their surfaces through melting and resolidification of a thin superficial layer. A Nd:YAG laser beam was used to irradiate Cr3C2-NiCr coatings either in the continuous wave mode or at different repetition rates in the pulsed one. Results indicated that high peak and low mean laser irradiances are not good, since samples presented deep grooves and an extensive crack network. At low peak and higher mean laser irradiances the surface was molten, and only a few shallow cracks were observed. The interconnected porosity was completely eliminated in a layer up to 80 m thick, formed by large Cr7C3 grains imbedded in a NiCr matrix.