945 resultados para UPWELLING ECOSYSTEM
Resumo:
Biomass and size structure of planktic infusoria communities were investigated in March 1987 at nine stations on a 370 mile transect across the coastal upwelling zone, the California current, and subtropical waters. Infusoria compose up to 71-92% of total biomass of heterotrophic micro- and nannoplankton; their biomass was 0.6-2.0 g/m**2 in the 0-200 m layer. Distinctive characteristics of taxonomic and size structures were of great diversity of microplanktic Stormbilidiwn forms, comparatively low abundance of tintinnids, and high abundance of nannoplanktic infusoria that accounted for 26-54% of biomass.
Resumo:
Quantitative data on lower marine Phycomycetes (fungi) found in the upwelling waters off the West African coast during cruises No. 13 (1968), 19 (1970), 36 (1975) and 44 (1977) of R.V. "Meteor" are reported. The distribution of the total fungi numbers is presented and, as far as possible, the evaluation of the material up to species level is given. Several provisionally named forms and groups of morphologically related, undescribed fungi are included. A correlation between the number of fungi in sediments and the water depth and distance from the coast line is postulated. There are typical distributions of the lower marine fungi in water bodies and sediments. Different values within replicates of the stations in different years show that there is a sequence in development of fungal populations induced by changes in the water bodies. Surface water far from the coast has low numbers of fungi; numbers increase to a maximum nearer to the coast. In the vicinity of the coast the values decrease. The numbers of fungi in the deep sediments are low below 1,200 m. However, there are isolated areas of higher fungal activities, indicated by some deeper grab samples. During two cruises, the "overlying water" in the grab samples was investigated. It was evident that the numbers of fungi lost by stirring of the sediment when the grab was brought up to the surface were small, relatively and absolutely. The seamount "Josephine Bank" has been investigated for the first time with respect to lower marine fungi; the populations are low in the sediments, but one sample of the surface water had a higher number than the water in the surroundings. In some hydrographic series there was a peculiar depth distribution. An increase occurred at a depth greater than 1,000 m. The results are discussed and some correlations to the aging of the fungal populations in the water masses are constructed.
Resumo:
Quantitative data on radiolarian assemblages from the Benguela upwelling at 17-25°S were obtained from analysis of 18 bottom sediment samples. The maximum abundance of Radiolaria (20000-40000 individuals per 1 g of sediment) was determined in sediments of the open ocean at depth 2000-4100 m. Species of tropical zones dominate in the assemblages; however content of species of subpolar and moderate zones reaches considerable values. In shelf sediments at depth 60-160 m abundance of Radiolaria (up to 5000 ind./g) is greater than in sediments of the continental slope. In shelf assemblages species of subpolar and temperate zones dominate. A characteristic feature of the shelf upwelling assemblages of Radiolaria is expressed by predominance of Lithomelissa setosa (Joerg.) (up to 50-80% at 23-25°S). L. setosa is a common representative of radiolarian assemblages of subpolar and temperate regions of the World Ocean. It is presumably regarded as an eurybiont species. Probably, it propagates with subantarctic intermediate water masses from the circumantarctic area to the Benguela upwelling region where there are favorable living conditions: subsurface water temperature is not higher than 10°C and there are high concentrations of nutrients.
Resumo:
Two sediment cores retrieved from the continental slope in the Benguela Upwelling System, GeoB 1706 (19°33.7'S 11°10.5'E) and GeoB 1711 (23°18.9'S, 12°22.6'E), reveal striking variations in planktonic foraminiferal abundances during the last 160,000 years. These fluctuations are investigated to assess changes in the intensity and position of the upwelling centres off Namibia. Four species make up over 95% of the variation within the core, and enable the record to be divided into episodes characterized by particular planktonic foraminiferal assemblages. The fossil assemblages have meaningful ecological significance when compared to those of the modern day and the relationship to their environment. The cold-water planktonic foraminifer, Neogloboquadrina pachyderma sinistral [N. pachyderma (s)], dominates the modern-day, coastal upwelling centres, and Neogloboquadrina pachyderma dextral and Globigerina bulloides characterize the fringes of the upwelling cells. Globorotalia inflata is representative of the offshore boundary between newly upwelled waters and the transitional, reduced nutrient levels of the subtropical waters. In the fossil record, episodes of high N. pachyderma (s) abundances are interpreted as evidence of increased upwelling intensity, and the associated increase in nutrients. The N. pachyderma (s) record suggests temporal shifts in the intensity of upwelling, and corresponding trophic domains, that do not follow the typical glacial-interglacial pattern. Periods of high N. pachyderma (s) abundance describe rapid, discrete events dominating isotope stages 3 and 2. The timing of these events correlates to the temporal shifts of the Angola-Benguela Front (Jansen et al., 1997) situated to the north of the Walvis Ridge. Absence of high abundances of N. pachyderma (s) from the continental slope of the southern Cape Basin indicates that Southern Ocean surface water advection has not exerted a major influence on the Benguela Current System. The coincidence of increased upwelling intensity with the movement of the Angola-Benguela Front can be interpreted mainly by changes in strength and zonality of the trade wind system.
Resumo:
We examined sediments from Neogene and Quaternary sections of the Benguela and Oman upwelling systems (DSDP Site 532, ODP Sites 723 and 722) to determine environmental and geochemical factors which control and limit pyrite formation in organic-carbon-rich marine sediments. Those samples from the upwelling sites, which contained low to moderate concentrations of total organic carbon (0.7%-3%), had C/S ratios typical of normal marine sediments, i.e., around 2.8. In these sediments, TOC availability probably limited pyrite formation. Results that do not conform with accepted models were found for the sediments high in TOC (3^0-12.4%). The organic matter was of marine origin and contained considerable pyrolytic hydrocarbons, a fact that we take as a sign of low degradation, yet significant concentrations of dissolved sulfate coexisted with it (> 5 mmol/L in the case of Sites 532 and 723). Detrital iron was probably not limiting in either case, because the degree of pyritization was always less than 0.65. Therefore, controls on sulfate reduction and pyrite formation in the organic matter-rich sediments do not appear to conform simply to generally accepted diagenetic models. The data from these thermally immature, old, and organic-rich marine sediments imply that (1) the total reduced sulfur content of organic-rich marine upwelling sediments rarely exceeds an approximate boundary of 1.5% by weight, (2) the C/S ratio of these sediments is not constant and usually much higher than the empirical values proposed for marine sediments. We conclude that sedimentary pyrite formation in upwelling sediments is limited by an as yet unknown factor, and that caution is advised in using C/S ratios and C vs. S diagrams in paleoenvironmental reconstructions for organic-rich sediments.