932 resultados para Turbine, expanders, organic, Rankine, cycles, ORC, Energy, systems, computational, model
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Zootecnia - FMVZ
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper presents a mixed-integer quadratically-constrained programming (MIQCP) model to solve the distribution system expansion planning (DSEP) problem. The DSEP model considers the construction/reinforcement of substations, the construction/reconductoring of circuits, the allocation of fixed capacitors banks and the radial topology modification. As the DSEP problem is a very complex mixed-integer non-linear programming problem, it is convenient to reformulate it like a MIQCP problem; it is demonstrated that the proposed formulation represents the steady-state operation of a radial distribution system. The proposed MIQCP model is a convex formulation, which allows to find the optimal solution using optimization solvers. Test systems of 23 and 54 nodes and one real distribution system of 136 nodes were used to show the efficiency of the proposed model in comparison with other DSEP models available in the specialized literature. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The biomass gasification systems have been used for a long time and prove to be a good alternative to the generation of energy problems. This type of management requires a simple installation and maintenance which gives them a high availability. In Biomass project via Call CTEnerg 33/2006-1, funded by the Ministry of Science and Technology - MCT - Brazil, the Group Energy Systems Optimization – GOSE - at FEG - UNESP built and tested two prototypes of gasifiers. These is fed with 25 kg / h of dry wood (chips), and 50 Nm3 / h of air to produce gas at a flow rate of approximately 70 Nm3 / h of wood (syngas) at a temperature approximately 600 ° C. In this work of graduation, studies were conducted on the materials used in both the gasifier as well as cleaning the filter synthesis gases. The system of gas cleaning and conditioning is vital to ensure the life of the Internal Combustion Engine. In this case the studies of different filters for small gasification systems (properties, materials used, characteristics, types, etc.) are very relevant to its use in the prototype of the college campus. Were also performed a technical and economic analysis of a cogeneration system that consists in the combination of the downdraft gasifier studied in this work, an internal combustion engine, two heat exchangers and a SRA (absorption system refrigerator). Were calculated the costs of electricity generation, hot water and cold water. Finally, we analyzed the economic feasibility of the project
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)