926 resultados para Tumor necrosis factor alpha
Resumo:
The Jun N-terminal kinases (JNKs) recently have been shown to be required for thymocyte apoptosis and T cell differentiation and/or proliferation. To investigate the molecular targets of JNK signaling in lymphoid cells, we used mice in which the serines phosphorylated by JNK in c-Jun were replaced by homologous recombination with alanines (junAA mice). Lymphocytes from these mice showed no phosphorylation of c-Jun in response to activation stimuli, whereas c-Jun was rapidly phosphorylated in wild-type cells. Despite the fact that c-jun is essential for early development, junAA mice develop normally; however, c-Jun N-terminal phosphorylation was required for efficient T cell receptor-induced and tumor necrosis factor-α-induced thymocyte apoptosis. In contrast, c-Jun phosphorylation by JNK is not required for T cell proliferation or differentiation. Because jnk2−/− T cells display a proliferation defect, we concluded that JNK2 must have other substrates required for lymphocyte function. Surprisingly, jnk2−/− T cells showed reduced NF-AT DNA-binding activity after activation. Furthermore, overexpression of JNK2 in Jurkat T cells strongly enhanced NF-AT-dependent transcription. These results demonstrate that JNK signaling differentially uses c-Jun and NF-AT as molecular effectors during thymocyte apoptosis and T cell proliferation.
Resumo:
Stimulation of endothelial cells by various inflammatory mediators leads to release of Weibel–Palade bodies and therefore to exocytosis of both P-selectin (adhesion receptor for leukocytes) and von Willebrand factor (vWf) (platelet ligand). The potential role of vWf in leukocyte recruitment was investigated with the use of vWf-deficient mice. We report a strong reduction of leukocyte rolling in venules of vWf-deficient mice. Similarly, vWf deficiency led to a decrease in neutrophil recruitment in a cytokine-induced meningitis model as well as in early skin wounds. In all instances with an antibody that preferentially recognizes plasma membrane P-selectin, we observed a dramatic reduction in P-selectin expression at the cell surface of vWf-deficient endothelium. With confocal microscopy, we found that the typical rodlike shape of the Weibel–Palade body is missing in vWf −/− endothelial cells and that part of the P-selectin content in the vWf −/− cells colocalized with LAMP-1, a lysosomal marker. However, intracellular P-selectin levels were similar in tumor necrosis factor α- and lipopolysaccharide-activated cells of both genotypes. We conclude that the absence of vWf, as found in severe von Willebrand disease, leads to a defect in Weibel–Palade body formation. This defect results in decreased P-selectin translocation to the cell surface and reduced leukocyte recruitment in early phases of inflammation.
Resumo:
Lymphocytes from blood or tumors of patients with advanced cancer did not proliferate and produced very low levels of tumor necrosis factor and IFN-γ when cultured with autologous tumor cells. Proliferation and lymphokine production dramatically increased in the presence of beads conjugated with mAbs to CD3 plus mAbs to CD28 and/or CD40, and the lymphocytes destroyed the tumor cells. Expression density of CD3 concomitantly increased from low to normal levels. Furthermore, beads providing a CD3 signal (in combination with CD28 or CD28 plus CD40) gave partial protection against the inhibitory effect of transforming growth factor type β1 on lymphocyte proliferation and production of tumor necrosis factor and IFN-γ. MHC class I-restricted cytolytic T cells lysing autologous tumor cells in a 4-h Cr51 release assay were generated when peripheral blood leukocytes were activated in the presence of autologous tumor cells and anti-CD3/CD28 or anti-CD3/CD28/CD40 beads. Experiments performed in a model system using anti-V-β1 or anti-V-β2 mAbs to activate subsets of T cells expressing restricted T cell receptor showed that lymphocytes previously activated by anti-V-β can respond to CD3 stimulation with vigorous proliferation and lymphokine production while retaining their specificity, also in the presence of transforming growth factor type β1. Our results suggest that T lymphocytes from cancer patients can proliferate and form Th1 type lymphokines in the presence of autologous tumor cell when properly activated, and that antigen released from killed tumor cells and presented by antigen-presenting cells in the cultures facilitates the selective expansion of tumor-directed, CD8+ cytolytic T cells.
Resumo:
Inflammatory responses in many cell types are coordinately regulated by the opposing actions of NF-κB and the glucocorticoid receptor (GR). The human glucocorticoid receptor (hGR) gene encodes two protein isoforms: a cytoplasmic alpha form (GRα), which binds hormone, translocates to the nucleus, and regulates gene transcription, and a nuclear localized beta isoform (GRβ), which does not bind known ligands and attenuates GRα action. We report here the identification of a tumor necrosis factor (TNF)-responsive NF-κB DNA binding site 5′ to the hGR promoter that leads to a 1.5-fold increase in GRα mRNA and a 2.0-fold increase in GRβ mRNA in HeLaS3 cells, which endogenously express both GR isoforms. However, TNF-α treatment disproportionately increased the steady-state levels of the GRβ protein isoform over GRα, making GRβ the predominant endogenous receptor isoform. Similar results were observed following treatment of human CEMC7 lymphoid cells with TNF-α or IL-1. The increase in GRβ protein expression correlated with the development of glucocorticoid resistance.
Resumo:
Interleukin (IL)-12 has strong antitumor activity in transplantable tumor systems in the mouse. The present study was designed to determine whether tumor induction by 3-methylcholanthrene (3-MC), a carcinogenic hydrocarbon, can be inhibited by IL-12. BALB/cBy mice were injected subcutaneously with 25 micrograms or 100 micrograms of 3-MC and treated with 100 ng, 10 ng, or 1 ng of IL-12 for 5 days a week for 18 weeks, with a schedule of 3 weeks on and 1 week off. In mice injected with 25 micrograms of 3-MC, treatment with 100 ng of IL-12 delayed tumor appearance and reduced tumor incidence. Tumor appearance was also delayed in mice injected with 100 micrograms of 3-MC and treated with 100 ng of IL-12, but the final tumor incidence was the same as in non-IL-12-treated mice. In contrast to the characteristically round, hard, well-circumscribed, and protruding tumor induced by 3-MC, a percentage of tumors induced in IL-12-treated mice had atypical characteristics: flat, soft, and invasive. Atypical tumors had a longer latent period and were more frequently seen in mice injected with 100 micrograms of 3-MC and treated with 100 ng of IL-12. Interferon gamma, IL-10, and tumor necrosis factor could be induced throughout the treatment period by IL-12, indicating that repeated injections of IL-12 do not induce a state of tachyphylaxis. High production of interferon gamma by CD8 T cells and a TH2-->TH1 or TH0 shift in the cytokine secretion profile of CD4 T cells were also seen in the IL-12-treated mice. IL-12 provides a powerful new way to explore the defensive role of the immune system in tumorigenesis.
Resumo:
With use of the yeast two-hybrid system, the proteins RIP and FADD/MORT1 have been shown to interact with the "death domain" of the Fas receptor. Both of these proteins induce apoptosis in mammalian cells. Using receptor fusion constructs, we provide evidence that the self-association of the death domain of RIP by itself is sufficient to elicit apoptosis. However, both the death domain and the adjacent alpha-helical region of RIP are required for the optimal cell killing induced by the overexpression of this gene. By contrast, FADD's ability to induce cell death does not depend on crosslinking. Furthermore, RIP and FADD appear to activate different apoptotic pathways since RIP is able to induce cell death in a cell line that is resistant to the apoptotic effects of Fas, tumor necrosis factor, and FADD. Consistent with this, a dominant negative mutant of FADD, lacking its N-terminal domain, blocks apoptosis induced by RIP but not by FADD. Since both pathways are blocked by CrmA, the interleukin 1 beta converting enzyme family protease inhibitor, these results suggest that FADD and RIP can act along separable pathways that nonetheless converge on a member of the interleukin 1 beta converting enzyme family of cysteine proteases.
Resumo:
CD30 is a member of the tumor necrosis factor (TNF) receptor superfamily. CD30 is expressed on normal activated lymphocytes, on several virally transformed T- or B-cell lines and on neoplastic cells of Hodgkin's lymphoma. The interaction of CD30 with its ligand induces pleiotropic effects on cells resulting in proliferation, differentiation, or death. The CD30 cytoplasmic tail interacts with TNF receptor-associated factors (TRAFs), which have been shown to transduce signals mediated by TNF-R2 and CD40. We demonstrate here that TRAF2 also plays an important role in CD30-induced NF-kappa B activation. We also show that TRAF2-mediated activation of NF-kappa B plays a role in the activation of HIV transcription induced by CD30 cross-linking. Detailed site-directed mutagenesis of the CD30 cytoplasmic tail reveals that there are two independent binding sites for TRAF, each interacting with a different domain of TRAF. Furthermore, we localized the TRAF-C binding site in CD30 to a 5-7 amino acid stretch.
Resumo:
Stress protein GRP78/BiP is highly induced in progressively growing tumors and has recently been shown to exert a protective role against lysis by cytotoxic T cells and tumor necrosis factor in vitro. This raises the question whether the in vitro observed protective function of GRP78/BiP translates into the in vivo situation in which tumors grow progressively, killing the host. Herein we report that molecular inhibition of GRP78/BiP induction in the fibrosarcoma B/C10ME, while not affecting in vitro cell proliferation, causes a dramatic increase in apoptotic cell death upon Ca2+ depletion of the endoplasmic reticulum. When B/C10ME cells incapable of inducing GRP78/BiP are injected into mice, tumors are initially formed that, however, regress presumably due to a cytotoxic T-cell response demonstrable by a strong in vitro response to the tumor with spleen cells of regressor mice. Since sensitivity to apoptosis is key to tumor rejection, these results may point to new approaches to the therapy of cancer via regulation of stress protein GRP78/BiP.
Resumo:
Study of the mechanism of HIV-1 postintegration latency in the ACH2 cell line demonstrates that these cells failed to increase HIV-1 production following treatment with exogenous Tat. Reasoning that the defect in ACH2 cells involves the Tat response, we analyzed the sequence of tat cDNA and Tat responsive element (TAR) from the virus integrated in ACH2. Tat cDNA sequence is closely related to that of HIV LAI, and the encoded protein is fully functional in terms of long terminal repeat (LTR) transactivation. Cloning of a region corresponding to the 5'-LTR from ACH2, however, identified a point mutation (C37 -> T) in TAR. This mutation impaired Tat responsiveness of the LTR in transient transfection assays, and the measured defect was complemented in cells that had been treated with tetradecanoyl phorbol acetate or tumor necrosis factor type alpha (TNF-alpha). A compensatory mutation in TAR (G28 -> A), designed to reestablish base pairing in the TAR hairpin, restored wild-type Tat responsiveness. When the (C37 -> T) mutation was introduced in an infectious clone of HIV-1, no viral production was measured in the absence of TNF-alpha, whereas full complementation was observed when the infection was conducted in the presence of TNF-alpha or when a compensatory mutation (G28 -> A) was introduced into TAR. These experiments identify a novel mutation associated with HIV-1 latency and suggest that alterations in the Tat-TAR axis can be a crucial determinant of the latent phenotype in infected individuals.
The platelet-derived growth factor alpha-receptor is encoded by a growth-arrest-specific (gas) gene.
Resumo:
Using the Escherichia coli lacZ gene to identify chromosomal loci that are transcriptionally active during growth arrest of NIH 3T3 fibroblasts, we found that an mRNA expressed preferentially in serum-deprived cells specifies the previously characterized alpha-receptor (alphaR) for platelet-derived growth factor (PDGF), which mediates mitogenic responsiveness to all PDGF isoforms. Both PDGFalphaR mRNA, which was shown to include a 111-nt segment encoded by a DNA region thought to contain only intron sequences, and PDGFalphaR protein accumulated in serum-starved cells and decreased as cells resumed cycling. Elevated PDGFalphaR gene expression during serum starvation was not observed in cells that had been transformed with oncogenes erbB2, src, or raf, which prevent starvation-induced growth arrest. Our results support the view that products of certain genes expressed during growth arrest function to promote, rather than restrict, cell cycling. We suggest that accumulation of the PDGFalphaR gene product may facilitate the exiting of cells from growth arrest upon mitogenic stimulation by PDGF, leading to the state of "competence" required for cell cycling.
Resumo:
Two chemokine (chemoattractant cytokines) beta peptides, macrophage inflammatory proteins 1 alpha and 1 beta (MIP-1 alpha and MIP-1 beta), were induced in human monocyte cultures following infection with the human immunodeficiency virus type 1 (HIV-1). Induction depended on productive viral infection: not only did the kinetics of MIP-1 peptide induction closely follow those of viral replication, but monocyte cultures inoculated with heat-inactivated virus or infected in the presence of AZT failed to produce these chemokine beta peptides. In addition, HIV infection markedly altered the pattern of beta chemokine expression elicited by tumor necrosis factor (TNF), itself a potent proinflammatory cytokine upregulated during the development of AIDS. Reverse transcription (RT)-PCR and RT-in situ PCR studies on brain tissue from patients with AIDS dementia demonstrated elevated MIP-1 alpha and MIP-1 beta mRNA expression relative to comparable samples from HIV-1-infected patients without dementia. Cells expressing chemokines in HIV-1-infected brains were identified morphologically as microglia and astrocytes. As MIP-1 alpha and MIP-1 beta are potent chemoattractants for both monocytes and specific subpopulations of lymphocytes, this dysregulation of beta chemokine expression may influence the trafficking of leukocytes during HIV infection. These data, taken together, suggest a mechanism by which HIV-1-infected monocytes might recruit uninfected T cells and monocytes to sites of active viral replication or inflammation, notably the brain and lymph nodes.
Resumo:
These studies were undertaken to investigate the therapeutic mechanism of saturated solutions of KI, used to treat infectious and inflammatory diseases. The addition of 12-50 mM KI to cultured human peripheral blood mononuclear cells resulted in 319-395 mosM final solute concentration and induced interleukin (IL)-8 synthesis. Maximal IL-8 production was seen when 40 mM salt was added (375 mosM) and was equal to IL-8 induced by endotoxin or IL-1 alpha. However, there was no induction of IL-1 alpha, IL-1 beta, or tumor necrosis factor to account for the synthesis of IL-8; the effect of KI was not due to contaminating endotoxins. Hyperosmolar NaCl also induced IL-8 and increased steady-state levels of IL-8 mRNA similar to those induced by IL-1 alpha. IL-8 gene expression was elevated for 96 hr in peripheral blood mononuclear cells incubated with hyperosmolar NaCl. In human THP-1 macrophagic cells, osmotic stimulation with KI, NaI, or NaCl also induced IL-8 production. IL-1 signal transduction includes the phosphorylation of the p38 mitogen-activated protein kinase that is observed following osmotic stress. Using specific blockade of this kinase, a dose-response inhibition of hyperosmolar NaCl-induced IL-8 synthesis was observed, similar to that in cells stimulated with IL-1. Thus, these studies suggest that IL-1 and osmotic shock utilize the same mitogen-activated protein kinase for signal transduction and IL-8 synthesis.
Resumo:
Fas, a member of the tumor necrosis factor receptor family, can induce apoptosis when activated by Fas ligand binding or anti-Fas antibody crosslinking. Genetic studies have shown that a defect in Fas-mediated apoptosis resulted in abnormal development and function of the immune system in mice. A point mutation in the cytoplasmic domain of Fas (a single base change from T to A at base 786), replacing isoleucine with asparagine, abolishes the signal transducing property of Fas. Mice homozygous for this mutant allele (lprcg/lprcg mice) develop lymphadenopathy and a lupus-like autoimmune disease. Little is known about the mechanism of signal transduction in Fas-mediated apoptosis. In this study, we used the two-hybrid screen in yeast to isolate a Fas-associated protein factor, FAF1, which specifically interacts with the cytoplasmic domain of wild-type Fas but not the lprcg-mutated Fas protein. This interaction occurs not only in yeast but also in mammalian cells. When transiently expressed in L cells, FAF1 potentiated Fas-induced apoptosis. A search of available DNA and protein sequence data banks did not reveal significant homology between FAF1 and known proteins. Therefore, FAF1 is an unusual protein that binds to the wild type but not the inactive point mutant of Fas. FAF1 potentiates Fas-induced cell killing and is a candidate signal transducing molecule in the regulation of apoptosis.
Resumo:
To determine whether T-cell-receptor (TCR) usage by T cells recognizing a defined human tumor antigen in the context of the same HLA molecule is conserved, we analyzed the TCR diversity of autologous HLA-A2-restricted cytotoxic T-lymphocyte (CTL) clones derived from five patients with metastatic melanoma and specific for the common melanoma antigen Melan-A/MART-1. These clones were first identified among HLA-A2-restricted anti-melanoma CTL clones by their ability to specifically release tumor necrosis factor in response to HLA-A2.1+ COS-7 cells expressing this tumor antigen. A PCR with variable (V)-region gene subfamily-specific primers was performed on cDNA from each clone followed by DNA sequencing. TCRAV2S1 was the predominant alpha-chain V region, being transcribed in 6 out of 9 Melan-A/MART-1-specific CTL clones obtained from the five patients. beta-chain V-region usage was also restricted, with either TCRBV14 or TCRBV7 expressed by all but one clone. In addition, a conserved TCRAV2S1/TCRBV14 combination was expressed in four CTL clones from three patients. None of these V-region genes was found in a group of four HLA-A2-restricted CTL clones recognizing different antigens (e.g., tyrosinase) on the autologous tumor. TCR joining regions were heterogeneous, although conserved structural features were observed in the complementarity-determining region 3 sequences. These results indicate that a selective repertoire of TCR genes is used in anti-melanoma responses when the response is narrowed to major histocompatibility complex-restricted antigen-specific interactions.
Resumo:
Regenerative proliferation occurs in the inner-ear sensory epithelial of warm-blooded vertebrates after insult. To determine how this proliferation is controlled in the mature mammalian inner ear, several growth factors were tested for effects on progenitor-cell division in cultured mouse vestibular sensory epithelia. Cell proliferation was induced in the sensory epithelium by transforming growth factor alpha (TGF-alpha) in a dose-dependent manner. Proliferation was also induced by epidermal growth factor (EGF) when supplemented with insulin, but not EGF alone. These observations suggest that stimulation of the EGF receptors by TGF-alpha binding, or EGF (plus insulin) binding, stimulates cell proliferation in the mature mammalian vestibular sensory epithelium.