895 resultados para Truck campers


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This extension circular covers the following areas of a cash flow planning form: Beginning Cash Balance, Operating Sales (crop and hay, market livestock, livestock product, custom work); Capital Sales (breeding livestock, machinery and equipment); Personal Income (wages, interest); Operating Expenses (car/truck, chemicals, conservation, custom hire, feed purchased, fertilizers and lime, freight and trucking, gasoline, fuel and oil, insurance, labor hired, rents and leases, repairs and maintenance, seeds and plants, storage, warehousing, supplies, taxes, utilities, veterinary, breeding fees and medicine, feeder livestock); Capital Purchases (breeding livestock, machinery and equipment, family living withdrawals, personal investments, income and social security, term loan payments); Net Cash Available (operating loan borrowings, operating loan payments); and Ending Operating Loan Balance. Along with the Cash Flow Planning Form is a Projected Income Statement Form which covers Projected Business Income (operating sales, breeding livestock, estimated cash income adjustments, estimated gross revenues, estimated value of production); Project Business Expenses (cash operating, esimated operating, prepaid and supplies, cash investment in growing crops, accounts payable); Projected Net Income Summary (estimated net income from operations, estimated net business income, estimated net income after taxes, estimated earned net worth change); and a Physical Inventory Flows Worksheet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A 3-inch-diameter plastic tube mounted on a truck was designed for distributing bait (cut carrots or grain) for mammal control. Baits are fed into the tube by an operator standing in the truck bed. The device is light-weight and detachable and permits rapid, accurate placement of bait along a line on the ground or in a plowed furrow.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The national truck fleet has expanded strongly in recent decades. However, due to fluctuations in the demand that the market is exposed, it needed up making more effective strategic decisions of automakers. These decisions are made after an evaluation of guaranteed sales forecasts. This work aims to generate an annual forecast of truck production by Box and Jenkins methodology. They used annual data for referring forecast modeling from the year 1957 to 2014, which were obtained by the National Association of Motor Vehicle Manufacturers (Anfavea). The model used was Autoregressive Integrated Moving Average (ARIMA) and can choose the best model for the series under study, and the ARIMA (2,1,3) as representative for conducting truck production forecast

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the last few years, the European Union (EU) has become greatly concerned about the environmental costs of road transport in Europe as a result of the constant growth in the market share of trucks and the steady decline in the market share of railroads. In order to reverse this trend, the EU is promoting the implementation of additional charges for heavy goods vehicles (HGV) on the trunk roads of the EU countries. However, the EU policy is being criticised because it does not address the implementation of charges to internalise the external costs produced by automobiles and other transport modes such as railroad. In this paper, we first describe the evolution of the HGV charging policy in the EU, and then assess its practical implementation across different European countries. Second, and of greater significance, by using the case study of Spain, we evaluate to what extent the current fees on trucks and trains reflect their social marginal costs, and consequently lead to an allocative-efficient outcome. We found that for the average case in Spain the truck industry meets more of the marginal social cost produced by it than does the freight railroad industry. The reason for this lies in the large sums of money paid by truck companies in fuel taxes, and the subsidies that continue to be granted by the government to the railroads.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Máster Universitario en Gestión Costera

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[EN]The present work describes the evolution of Seriolla dumerilli stock in the Instituto Canario de Ciencias Marinas from year 2006 to 2009. Nine sub adults of kingfish were captured by local fisherman in the south coast of Gran Canaria in may 2006, fish were transported in a truck and transferred to on land facilities. Adaptation to tanks and inert food was successfully carried out one month after the capture. After 3 year kept in captivity 100% survival was obtained. Initial fish weight (1,66kg), was increased over to 8,0 kg nowadays. Every year fish were sampled to determine individual growth in weight and size. In addition, the evolution of its sexual maturity state was established by ovarian biopsy. Oocites over 500 microns were observed in year 2008 in one of the females with an average weight of 3,8kg. In year 2009, mature fish were observed, but natural spawn was unsuccessful, however the use of hormonal injection (LHRH) results in two successful spawn with around 0,5 millions eggs (99% unfertilized eggs).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La tesi tratta di strumenti finalizzati alla valutazione dello stato conservativo e di supporto all'attività di manutenzione dei ponti, dai più generali Bridge Management Systems ai Sistemi di Valutazione Numerica della Condizione strutturale. Viene proposto uno strumento originale con cui classificare i ponti attraverso un Indice di Valutazione Complessiva e grazie ad esso stabilire le priorità d'intervento. Si tara lo strumento sul caso pratico di alcuni ponti della Provincia di Bologna. Su un ponte in particolare viene realizzato un approfondimento specifico sulla determinazione approssimata dei periodi propri delle strutture da ponte. Si effettua un confronto dei risultati di alcune modellazioni semplificate in riferimento a modellazioni dettagliate e risultati sperimentali.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This PhD research is part of a project addressed to improve the quality of Grana Trentino production. The objectives were to evaluated if milk storage and collection procedures may affect cheese-making technology and quality. Actually the milk is collected and delivered to the cheese factory just after milking in 50 L cans without refrigeration or in tanks cooled at 18 °C. This procedure is expensive (two deliveries each day) and the milk quality is difficult to preserve as temperatures are not controlled. The milk refrigeration at the farm could allow a single delivery to the dairy. Therefore it could be a good strategy to preserve raw milk quality and reduce cheese spoilage. This operation may, however, have the drawbacks of favouring the growth of psychrotrophic bacteria and changing the aptitude of milk to coagulation. With the aim of studying the effect on milk and cheese of traditional and new refrigerated technologies of milk storage, two different collection and creaming technologies were compared. The trials were replicated in three cheese factories manufacturing Grana Trentino. Every cheese-making day, about 1000 milk liters were collected from always the same two farms in the different collection procedures (single or double). Milk was processed to produce 2 wheels of Grana trentino every day. During the refrigerated trials, milk was collected and stored at the farm in a mixed tank at 12 or 8 °C and then was carried to the dairy in truck once a day. 112 cheese making day were followed: 56 for traditional technology and 56 for the refrigerated one. Each one of these two thechnologies lead to different ways of creaming: long time in the traditional one and shorter in the new one. For every cheese making day we recorded time, temperatures and pH during the milk processing to cheese. Whole milk before ceraming, cream and skim milk after creaming, vat milk and whey were sampled during every cheese-making day for analysis. After 18 months ripening we opened 46 cheese wheels for further chemical and microbiological analyses. The trials were performed with the aim of: 1 estimate the effect of storage temperatures on microbial communities, physico-chemical or/and rheological differences of milk and skim milk after creaming. 2 detect by culture dependent (plate counts) and indipendent (DGGE) methodolgies the microbial species present in whole, skimmed milk, cream and cheese sampled under the rind and in the core; 3 estimate the physico-chemical characteristics, the proteolytic activity, the content of free aminoacids and volatile compounds in 18 months ripened Grana Trentino cheeses from different storing and creaming of milk technologies. The results presented are remarkable since this is the first in-deep study presenting microbiological and chemical analysis of Grana Trentino that even if belonging to Grana Padano Consortium, it is clearly different in the milk and in the manufacturing technology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Outside of relatively limited crash testing with large trucks, very little is known regarding the performance of traffic barriers subjected to real-world large truck impacts. The purpose of this study was to investigate real-world large truck impacts into traffic barriers to determine barrier crash involvement rates, the impact performance of barriers not specifically designed to redirect large trucks, and the real-world performance of large-truck-specific barriers. Data sources included the Fatality Analysis Reporting System (2000-2009), the General Estimates System (2000-2009) and 155 in-depth large truck-to-barrier crashes from the Large Truck Crash Causation Study. Large truck impacts with a longitudinal barrier were found to comprise 3 percent of all police-reported longitudinal barrier impacts and roughly the same proportion of barrier fatalities. Based on a logistic regression model predicting barrier penetration, large truck barrier penetration risk was found to increase by a factor of 6 for impacts with barriers designed primarily for passenger vehicles. Although large-truck-specific barriers were found to perform better than non-heavy vehicle specific barriers, the penetration rate of these barriers were found to be 17 percent. This penetration rate is especially a concern because the higher test level barriers are designed to protect other road users, not the occupants of the large truck. Surprisingly, barriers not specifically designed for large truck impacts were found to prevent large truck penetration approximately half of the time. This suggests that adding costlier higher test level barriers may not always be warranted, especially on roadways with lower truck volumes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Laurentide glaciation during the early Pleistocene (~970 ka) dammed the southeast-flowing West Branch of the Susquehanna River (WBSR), scouring bedrock and creating 100-km-long glacial Lake Lesley near the Great Bend at Muncy, Pennsylvania (Ramage et al., 1998). Local drill logs and well data indicate that subsequent paleo-outwash floods and modern fluvial processes have deposited as much as 30 meters of alluvium in this area, but little is known about the valley fill architecture and the bedrock-alluvium interface. By gaining a greater understanding of the bedrock-alluvium interface the project will not only supplement existing depth to bedrock information, but also provide information pertinent to the evolution of the Muncy Valley landscape. This project determined if variations in the thickness of the valley fill were detectable using micro-gravity techniques to map the bedrock-alluvium interface. The gravity method was deemed appropriate due to scale of the study area (~30 km2), ease of operation by a single person, and the available geophysical equipment. A LaCoste and Romberg Gravitron unit was used to collect gravitational field readings at 49 locations over 5 transects across the Muncy Creek and Susquehanna River valleys (approximately 30 km2), with at least two gravity base stations per transect. Precise latitude, longitude and ground surface elevation at each location were measured using an OPUS corrected Trimble RTK-GPS unit. Base stations were chosen based on ease of access due to the necessity of repeat measurements. Gravity measurement locations were selected and marked to provide easy access and repeat measurements. The gravimeter was returned to a base station within every two hours and a looping procedure was used to determine drift and maximize confidence in the gravity measurements. A two-minute calibration reading at each station was used to minimize any tares in the data. The Gravitron digitally recorded finite impulse response filtered gravity measurements every 20 seconds at each station. A measurement period of 15 minutes was used for each base station occupation and a minimum of 5 minutes at all other locations. Longer or multiple measurements were utilized at some sites if drift or other externalities (i.e. train or truck traffic) were effecting readings. Average, median, standard deviation and 95% confidence interval were calculated for each station. Tidal, drift, latitude, free-air, Bouguer and terrain corrections were then applied. The results show that the gravitational field decreases as alluvium thickness increases across the axes of the Susquehanna River and Muncy Creek valleys. However, the location of the gravity low does not correspond with the present-day location of the West Branch of the Susquehanna River (WBSR), suggesting that the WBSR may have been constrained along Bald Eagle Mountain by a glacial lobe originating from the Muncy Creek Valley to the northeast. Using a 3-D inversion model, the topography of the bedrock-alluvium interface was determined over the extent of the study area using a density contrast of -0.8 g/cm3. Our results are consistent with the bedrock geometry of the area, and provide a low-cost, non-invasive and efficient method for exploring the subsurface and for supplementing existing well data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of the Marcellus Shale gas play in Pennsylvania and the northeastern United States has resulted in significant amounts of water and wastes transported by truck over roadways. This study used geographic information systems (GIS) to quantify truck travel distances via both the preferred routes (minimum distance while also favoring higher-order roads) as well as, where available, the likely actual distances for freshwater and waste transport between pertinent locations (e. g., gas wells, treatment facilities, freshwater sources). Results show that truck travel distances in the Susquehanna River Basin are greater than those used in prior life-cycle assessments of tight shale gas. When compared to likely actual transport distances, if policies were instituted to constrain truck travel to the closest destination and higher-order roads, transport mileage reductions of 40-80% could be realized. Using reasonable assumptions of current practices, greenhouse gas (GHG) emissions associated with water and waste hauling were calculated to be 70-157 MT CO2 eq per gas well. Furthermore, empty so-called backhaul trips, such as to freshwater withdrawal sites or returning from deep well injection sites, were found to increase emissions by an additional 30%, underscoring the importance of including return trips in the analysis. The results should inform future life-cycle assessments of tight shale gases in managed watersheds and help local and regional governments plan for impacts of transportation on local infrastructure. (C) 2013 American Society of Civil Engineers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As transportation infrastructure across the globe approaches the end of its service life, new innovative materials and applications are needed to sustainably repair and prevent damage to these structures. Bridge structures in the United States in particular are at risk as a large percentage will be reaching their design service lives in the coming decades. Superstructure deterioration occurs due to a variety of factors, but a major contributor comes in the form of deteriorating concrete bridge decks. Within a concrete bridge deck system, deterioration mechanisms can include spalling, delaminations, scaling from unsuitable material selection, freeze-thaw damage, and corrosion of reinforcing steel due to infiltration of chloride ions and moisture. This thesis presents findings pertaining to the feasibility of using UHPC as a thin-bonded overlay on concrete bridge decks, specifically in precast bridge deck applications where construction duration and traffic interruption can be minimized, as well as in cast-in-place field applications. UHPC has several properties that make it a desirable material for this application. These properties include post-cracking tensile capacity, high compressive strength, high resistance to environmental and chemical attack, negligible permeability, negligible dry shrinkage when thermally cured, and the ability to self consolidate. The compatibility of this bridge deck overlay system was determined to minimize overlay thickness and dead load without sacrificing bond integrity or lose of protective capabilities. A parametric analysis was conducted using a 3D finite element model of a simply supported bridge under HS-20 truck and overload. Experimental tests were conducted to determine the net effect of UHPC volume change due to restrained shrinkage and tensile creep relaxation. The combined effects from numerical models and test results were then considered in determining the optimum overlay thickness for cast-in-place and precast applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Moisture induced distresses have been the prevalent distress type affecting the deterioration of both asphalt and concrete pavement sections. While various surface techniques have been employed over the years to minimize the ingress of moisture into the pavement structural sections, subsurface drainage components like open-graded base courses remain the best alternative in minimizing the time the pavement structural sections are exposed to saturated conditions. This research therefore focuses on assessing the performance and cost-effectiveness of pavement sections containing both treated and untreated open-graded aggregate base materials. Three common roadway aggregates comprising of two virgin aggregates and one recycled aggregate were investigated using four open-ended gradations and two binder types. Laboratory tests were conducted to determine the hydraulic, mechanical and durability characteristics of treated and untreated open-graded mixes made from these three aggregate types. Results of the experimental program show that for the same gradation and mix design types, limestone samples have the greatest drainage capacity, stability to traffic loads and resistance to degradation from environmental conditions like freeze-thaw. However, depending on the gradation and mix design used, all three aggregate types namely limestone, natural gravel and recycled concrete can meet the minimum coefficient of hydraulic conductivity required for good drainage in most pavements. Tests results for both asphalt and cement treated open-graded samples indicate that a percent air void content within the range of 15-25 will produce a treated open-graded base course with sufficient drainage capacity and also long term stability under both traffic and environmental loads. Using the new Mechanistic and Empirical Design Guide software, computer simulations of pavement performance were conducted on pavement sections containing these open-graded base aggregate base materials to determine how the MEPDG predicted pavement performance is sensitive to drainage. Using three truck traffic levels and four climatic regions, results of the computer simulations indicate that the predicted performance was not sensitive to the drainage characteristics of the open-graded base course. Based on the result of the MEPDG predicted pavement performance, the cost-effectiveness of the pavement sections with open-graded base was computed on the assumption that the increase service life experienced by these sections was attributed to the positive effects of subsurface drainage. The two cost analyses used gave two contrasting results with the one indicating that the inclusion of open-graded base courses can lead to substantial savings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A range of societal issues have been caused by fossil fuel consumption in the transportation sector in the United States (U.S.), including health related air pollution, climate change, the dependence on imported oil, and other oil related national security concerns. Biofuels production from various lignocellulosic biomass types such as wood, forest residues, and agriculture residues have the potential to replace a substantial portion of the total fossil fuel consumption. This research focuses on locating biofuel facilities and designing the biofuel supply chain to minimize the overall cost. For this purpose an integrated methodology was proposed by combining the GIS technology with simulation and optimization modeling methods. The GIS based methodology was used as a precursor for selecting biofuel facility locations by employing a series of decision factors. The resulted candidate sites for biofuel production served as inputs for simulation and optimization modeling. As a precursor to simulation or optimization modeling, the GIS-based methodology was used to preselect potential biofuel facility locations for biofuel production from forest biomass. Candidate locations were selected based on a set of evaluation criteria, including: county boundaries, a railroad transportation network, a state/federal road transportation network, water body (rivers, lakes, etc.) dispersion, city and village dispersion, a population census, biomass production, and no co-location with co-fired power plants. The simulation and optimization models were built around key supply activities including biomass harvesting/forwarding, transportation and storage. The built onsite storage served for spring breakup period where road restrictions were in place and truck transportation on certain roads was limited. Both models were evaluated using multiple performance indicators, including cost (consisting of the delivered feedstock cost, and inventory holding cost), energy consumption, and GHG emissions. The impact of energy consumption and GHG emissions were expressed in monetary terms to keep consistent with cost. Compared with the optimization model, the simulation model represents a more dynamic look at a 20-year operation by considering the impacts associated with building inventory at the biorefinery to address the limited availability of biomass feedstock during the spring breakup period. The number of trucks required per day was estimated and the inventory level all year around was tracked. Through the exchange of information across different procedures (harvesting, transportation, and biomass feedstock processing procedures), a smooth flow of biomass from harvesting areas to a biofuel facility was implemented. The optimization model was developed to address issues related to locating multiple biofuel facilities simultaneously. The size of the potential biofuel facility is set up with an upper bound of 50 MGY and a lower bound of 30 MGY. The optimization model is a static, Mathematical Programming Language (MPL)-based application which allows for sensitivity analysis by changing inputs to evaluate different scenarios. It was found that annual biofuel demand and biomass availability impacts the optimal results of biofuel facility locations and sizes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this study is to design, develop and integrate a Compressed Natural Gas (CNG) tank that will have a conformable shape for efficient storage in a light-duty pick-up truck. The CNG tank will be a simple rectangular box geometry to demonstrate capability of non-cylindrical shapes. Using CAD drawings of the truck, a conformable tank will be designed to fit under the pick-up bed. The intent of the non-cylindrical CNG tank is to demonstrate improvement in size over the current solution, which is a large cylinder in the box of a pick-up truck. The geometry of the tank’s features is critical to its size and strength. The optimized tank design will be simulated with Finite Element Analysis (FEA) to determine critical stress regions, and appropriate design changes will be made to reduce stress concentration. Following the American National Standard Institute (ANSI) guide, different aluminum alloys will be optimized to obtain the best possible result for the CNG tank.