830 resultados para Translating and interpreting
Resumo:
The Implicit Association Test (IAT) had already gained the status of a prominent assessment procedure before its psychometric properties and underlying task structure were understood. The present critique addresses five major problems that arise when the IAT is used for diagnostic inferences: (1) the asymmetry of causal and diagnostic inferences; (2) the viability of the underlying association model; (3) the lack of a testable model underlying IAT-based inferences; (4) the difficulties of interpreting difference scores; and (5) the susceptibility of the IAT to deliberate faking and strategic processing. Based on a theoretical reflection of these issues, and a comprehensive survey of published IAT studies, it is concluded that a number of uncontrolled factors can produce (or reduce) significant IAT scores independently of the personality attribute that is supposed to be captured by the IAT procedure.
Resumo:
Modern cloud-based applications and infrastructures may include resources and services (components) from multiple cloud providers, are heterogeneous by nature and require adjustment, composition and integration. The specific application requirements can be met with difficulty by the current static predefined cloud integration architectures and models. In this paper, we propose the Intercloud Operations and Management Framework (ICOMF) as part of the more general Intercloud Architecture Framework (ICAF) that provides a basis for building and operating a dynamically manageable multi-provider cloud ecosystem. The proposed ICOMF enables dynamic resource composition and decomposition, with a main focus on translating business models and objectives to cloud services ensembles. Our model is user-centric and focuses on the specific application execution requirements, by leveraging incubating virtualization techniques. From a cloud provider perspective, the ecosystem provides more insight into how to best customize the offerings of virtualized resources.
Resumo:
Within the current context that favours the emergence of new diseases, syndromic surveillance (SyS) appears increasingly more relevant tool for the early detection of unexpected health events. The Triple-S project (Syndromic Surveillance Systems in Europe), co-financed by the European Commission, was launched in September 2010 for a three year period to promote both human and animal health SyS in European countries. Objectives of the project included performing an inventory of current and planned European animal health SyS systems and promoting knowledge transfer between SyS experts. This study presents and discusses the results of the Triple-S inventory of European veterinary SyS initiatives. European SyS systems were identified through an active process based on a questionnaire sent to animal health experts involved in SyS in Europe. Results were analyzed through a descriptive analysis and a multiple factor analysis (MFA) in order to establish a typology of the European SyS initiatives. Twenty seven European SyS systems were identified from twelve countries, at different levels of development, from project phase to active systems. Results of this inventory showed a real interest of European countries for SyS but also highlighted the novelty of this field. This survey highlighted the diversity of SyS systems in Europe in terms of objectives, population targeted, data providers, indicators monitored. For most SyS initiatives, statistical analysis of surveillance results was identified as a limitation in using the data. MFA results distinguished two types of systems. The first one belonged to the private sector, focused on companion animals and had reached a higher degree of achievement. The second one was based on mandatory collected data, targeted livestock species and is still in an early project phase. The exchange of knowledge between human and animal health sectors was considered useful to enhance SyS. In the same way that SyS is complementary to traditional surveillance, synergies between human and animal health SyS could be an added value, most notably to enhance timeliness, sensitivity and help interpreting non-specific signals.
Resumo:
The induction of late long-term potentiation (L-LTP) involves complex interactions among second-messenger cascades. To gain insights into these interactions, a mathematical model was developed for L-LTP induction in the CA1 region of the hippocampus. The differential equation-based model represents actions of protein kinase A (PKA), MAP kinase (MAPK), and CaM kinase II (CAMKII) in the vicinity of the synapse, and activation of transcription by CaM kinase IV (CAMKIV) and MAPK. L-LTP is represented by increases in a synaptic weight. Simulations suggest that steep, supralinear stimulus-response relationships between stimuli (e.g., elevations in [Ca(2+)]) and kinase activation are essential for translating brief stimuli into long-lasting gene activation and synaptic weight increases. Convergence of multiple kinase activities to induce L-LTP helps to generate a threshold whereby the amount of L-LTP varies steeply with the number of brief (tetanic) electrical stimuli. The model simulates tetanic, -burst, pairing-induced, and chemical L-LTP, as well as L-LTP due to synaptic tagging. The model also simulates inhibition of L-LTP by inhibition of MAPK, CAMKII, PKA, or CAMKIV. The model predicts results of experiments to delineate mechanisms underlying L-LTP induction and expression. For example, the cAMP antagonist RpcAMPs, which inhibits L-LTP induction, is predicted to inhibit ERK activation. The model also appears useful to clarify similarities and differences between hippocampal L-LTP and long-term synaptic strengthening in other systems.
Resumo:
In many field or laboratory situations, well-mixed reservoirs like, for instance, injection or detection wells and gas distribution or sampling chambers define boundaries of transport domains. Exchange of solutes or gases across such boundaries can occur through advective or diffusive processes. First we analyzed situations, where the inlet region consists of a well-mixed reservoir, in a systematic way by interpreting them in terms of injection type. Second, we discussed the mass balance errors that seem to appear in case of resident injections. Mixing cells (MC) can be coupled mathematically in different ways to a domain where advective-dispersive transport occurs: by assuming a continuous solute flux at the interface (flux injection, MC-FI), or by assuming a continuous resident concentration (resident injection). In the latter case, the flux leaving the mixing cell can be defined in two ways: either as the value when the interface is approached from the mixing-cell side (MC-RT -), or as the value when it is approached from the column side (MC-RT +). Solutions of these injection types with constant or-in one case-distance-dependent transport parameters were compared to each other as well as to a solution of a two-layer system, where the first layer was characterized by a large dispersion coefficient. These solutions differ mainly at small Peclet numbers. For most real situations, the model for resident injection MC-RI + is considered to be relevant. This type of injection was modeled with a constant or with an exponentially varying dispersion coefficient within the porous medium. A constant dispersion coefficient will be appropriate for gases because of the Eulerian nature of the usually dominating gaseous diffusion coefficient, whereas the asymptotically growing dispersion coefficient will be more appropriate for solutes due to the Lagrangian nature of mechanical dispersion, which evolves only with the fluid flow. Assuming a continuous resident concentration at the interface between a mixing cell and a column, as in case of the MC-RI + model, entails a flux discontinuity. This flux discontinuity arises inherently from the definition of a mixing cell: the mixing process is included in the balance equation, but does not appear in the description of the flux through the mixing cell. There, only convection appears because of the homogeneous concentration within the mixing cell. Thus, the solute flux through a mixing cell in close contact with a transport domain is generally underestimated. This leads to (apparent) mass balance errors, which are often reported for similar situations and erroneously used to judge the validity of such models. Finally, the mixing cell model MC-RI + defines a universal basis regarding the type of solute injection at a boundary. Depending on the mixing cell parameters, it represents, in its limits, flux as well as resident injections. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
Deadenylation is the major step triggering mammalian mRNA decay. One consequence of deadenylation is the formation of nontranslatable messenger RNA (mRNA) protein complexes (messenger ribonucleoproteins [mRNPs]). Nontranslatable mRNPs may accumulate in P-bodies, which contain factors involved in translation repression, decapping, and 5'-to-3' degradation. We demonstrate that deadenylation is required for mammalian P-body formation and mRNA decay. We identify Pan2, Pan3, and Caf1 deadenylases as new P-body components and show that Pan3 helps recruit Pan2, Ccr4, and Caf1 to P-bodies. Pan3 knockdown causes a reduction of P-bodies and has differential effects on mRNA decay. Knocking down Caf1 or overexpressing a Caf1 catalytically inactive mutant impairs deadenylation and mRNA decay. P-bodies are not detected when deadenylation is blocked and are restored when the blockage is released. When deadenylation is impaired, P-body formation is not restorable, even when mRNAs exit the translating pool. These results support a dynamic interplay among deadenylation, mRNP remodeling, and P-body formation in selective decay of mammalian mRNA.
Resumo:
Deadenylation is the major step triggering mammalian mRNA decay. One consequence of deadenylation is the formation of nontranslatable messenger RNA (mRNA) protein complexes (messenger ribonucleoproteins [mRNPs]). Nontranslatable mRNPs may accumulate in P-bodies, which contain factors involved in translation repression, decapping, and 5'-to-3' degradation. We demonstrate that deadenylation is required for mammalian P-body formation and mRNA decay. We identify Pan2, Pan3, and Caf1 deadenylases as new P-body components and show that Pan3 helps recruit Pan2, Ccr4, and Caf1 to P-bodies. Pan3 knockdown causes a reduction of P-bodies and has differential effects on mRNA decay. Knocking down Caf1 or overexpressing a Caf1 catalytically inactive mutant impairs deadenylation and mRNA decay. P-bodies are not detected when deadenylation is blocked and are restored when the blockage is released. When deadenylation is impaired, P-body formation is not restorable, even when mRNAs exit the translating pool. These results support a dynamic interplay among deadenylation, mRNP remodeling, and P-body formation in selective decay of mammalian mRNA.
Resumo:
This Journal issue provides three important articles that will aid us in explaining what we do in service to families. We are very pleased to have the opportunity to print a major address delivered by William Meezan on "Translating Rhetoric to Reality: The Future of Family and Children's Services." The challenges of serving families under an evolution of models in Kansas is presented in "Family Preservation Services Under Managed Care: Current Practices and Future Directions" by Melanie Pheatt, Becky Douglas, Lori Wilson, Jody Brook, and Marianne Berry. What people doing the work think is addressed by the piece titled, "Perceptions of Family Preservation Practitioners: A Preliminary Study" by Judith Hilbert, Alvin L. Sallee, and James K. Ott. Finally, this issue presents a number of very interesting reviews of new resources.
Resumo:
Female inmates make up the fastest growing segment in our criminal justice system today. The rapidly increasing trend for female prisoners calls for enhanced efforts to strategically plan the correctional facilities that address the needs of this growing population, and to work with communities to prevent crime in women. The incarcerated women in the U.S. have an estimated 145,000 minor children who are predisposed to unique psychosocial problems as a result of parental incarceration.^ This study examined the patterns of care and outcomes for pregnant inmates and their infants in Texas state prisons between 1994 and 1996. The study population consists of 202 pregnant inmates who delivered in a 2-year period, and a randomly sampled comparison cohort of 804 women from general Texas population, matched on race and educational levels. Both quantitative and qualitative data were used to elucidate the inmates' risk-factor profile, delivery/birth outcomes, and the patterns of care during pregnancy. The continuity-of-care issues for this population were also explored.^ Epidemiologic data were derived from multiple record systems to establish the comparison between two cohorts. A significantly great proportion of the inmates have prior lifestyle risk-factors (smoking, alcohol, and illicit drug abuse), poorer health status, and worse medical history. However, most of these existing risk-factors seem to show little manifestation in their current pregnancy. On the basis of maternal labor/delivery outcome and a number of neonatal indicators, this study found some evidence of a better pregnancy outcome for the inmate cohort when compared to the comparison group. Some possible explanations of this paradox were discussed. Seventeen percent of inmates gave birth to infants with suspected congenital syphilis. The placement patterns for the infants' care immediately after birth were elucidated.^ In addition to the quantitative data, an ethnographic approach was used to collect qualitative data from a subset of the inmate cohort (n = 20) and 12 care providers. The qualitative data were analyzed for their contents and themes, giving rise to a detailed description of the inmates' pregnancy experience. Eleven themes emerged from the study's thematic analysis, which provides the context for interpreting the epidemiologic data.^ Meaningful findings in this study were presented in a three-dimensional matrix to shed light on the apparent relationship between outcome indicators and their potential determinants. The suspected "linkages" between the outcome and their determinants can be used to generate hypotheses for future studies. ^
Resumo:
The oxygen isotopic composition of precipitation (δ18Oprec) is well known to be a valuable (paleo-)climate proxy. Paleosols and sediments and hemicelluloses therein have the potential to serve as archives recording the isotopic composition of paleoprecipitation. In a companion paper (Zech et al., 2014) we investigated δ18Ohemicellulose values of plants grown under different climatic conditions in a climate chamber experiment. Here we present results of compound-specific δ18O analyses of arabinose, fucose and xylose extracted from modern topsoils (n = 56) along a large humid-arid climate transect in Argentina in order to answer the question whether hemicellulose biomarkers in soils reflect δ18Oprec. The results from the field replications indicate that the homogeneity of topsoils with regard to δ18Ohemicellulose is very high for most of the 20 sampling sites. Standard deviations for the field replications are 1.5‰, 2.2‰ and 1.7‰, for arabinose, fucose and xylose, respectively. Furthermore, all three hemicellulose biomarkers reveal systematic and similar trends along the climate gradient. However, the δ18Ohemicellulose values (mean of the three sugars) do not correlate positively with δ18Oprec (r = −0.54, p < 0.014, n = 20). By using a Péclet-modified Craig-Gordon (PMCG) model it can be shown that the δ18Ohemicellulose values correlate highly significantly with modeled δ18Oleaf water values (r = 0.81, p < 0.001, n = 20). This finding suggests that hemicellulose biomarkers in (paleo-)soils do not simply reflect δ18Oprec but rather δ18Oprec altered by evaporative 18O enrichment of leaf water due to evapotranspiration. According to the modeling results, evaporative 18O enrichment of leaf water is relatively low (∼10‰) in the humid northern part of the Argentinian transect and much higher (up to 19‰) in the arid middle and southern part of the transect. Model sensitivity tests corroborate that changes in relative air humidity exert a dominant control on evaporative 18O enrichment of leaf water and thus δ18Ohemicellulose, whereas the effect of temperature changes is of minor importance. While oxygen exchange and degradation effects seem to be negligible, further factors needing consideration when interpreting δ18Ohemicellulose values obtained from (paleo-)soils are evaporative 18O enrichment of soil water, seasonality effects, wind effects and in case of abundant stem/root-derived organic matter input a partial loss of the evaporative 18O enrichment of leaf water. Overall, our results prove that compound-specific δ18O analyses of hemicellulose biomarkers in soils and sediments are a promising tool for paleoclimate research. However, disentangling the two major factors influencing δ18Ohemicellulose, namely δ18Oprec and relative air humidity controlled evaporative 18O enrichment of leaf water, is challenging based on δ18O analyses alone.
Dating the Siple Dome (Antarctica) Ice Core By Manual and Computer Interpretation of Annual Layering
Resumo:
The Holocene portion of the Siple Dome (Antarctica) ice core was dated by interpreting the electrical, visual and chemical properties of the core. The data were interpreted manually and with a computer algorithm. The algorithm interpretation was adjusted to be consistent with atmospheric methane stratigraphic ties to the GISP2 (Greenland Ice Sheet Project 2) ice core, (BE)-B-10 stratigraphic ties to the dendrochronology C-14 record and the dated volcanic stratigraphy. The algorithm interpretation is more consistent and better quantified than the tedious and subjective manual interpretation.
Explaining Emergence and Consequences of Specific Formal Controls in IS Outsourcing – A Process-View
Resumo:
IS outsourcing projects often fail to achieve project goals. To inhibit this failure, managers need to design formal controls that are tailored to the specific contextual demands. However, the dynamic and uncertain nature of IS outsourcing projects makes the design of such specific formal controls at the outset of a project challenging. Hence, the process of translating high-level project goals into specific formal controls becomes crucial for success or failure of IS outsourcing projects. Based on a comparative case study of four IS outsourcing projects, our study enhances current understanding of such translation processes and their consequences by developing a process model that explains the success or failure to achieve high-level project goals as an outcome of two unique translation patterns. This novel process-based explanation for how and why IS outsourcing projects succeed or fail has important implications for control theory and IS project escalation literature.
Resumo:
This paper asks how World Trade Organization (WTO) panels and the Appellate Body (AB) take public international law (PIL) into account when interpreting WTO rules as a part of international economic law (IEL). Splendid isolation of the latter is not new; indeed it is intended by the negotiators of the Understanding on the Settlement of Disputes (DSU). At the same time, the Vienna Convention on the Law of Treaties (VCLT) is quite clear when it provides the general rules and the supplementary means of treaty interpretation. Despite such mandatory guidance, WTO adjudicators (when given a choice and assuming they see the conflict) prefer deference to WTO law over deference to Vienna and take a dogmatic way out of interpretation quandaries. The AB and panels make abundant reference to Vienna, though less so to substantive PIL. Often times, however, they do so simply in order to buttress their findings of violations of WTO rules. Perhaps tellingly, however, none of the reports in EC – Seals contains even a single mention of VCLT, despite numerous references to international standards addressing indigenous rights and animal welfare. In the longer term, and absent a breakthrough on the negotiation front, this pattern of carefully eschewing international treaty law and using PIL just for the sake of convenience could have serious consequences for the credibility and acceptance of the multilateral trading system. Following the adage ‘negotiate or litigate’ recourse to WTO dispute settlement increases when governments are less ready to make treaty commitments commensurate with the challenges of globalisation. This is true even for ‘societal choice’ cases on the margins of classic trade disputes. We will argue here that it is precisely for cases such as these that VCLT and PIL should be used more systematically by panels and the AB. Failing that, instead of building bridges for more coherent international regulation, WTO adjudicators could burn those same bridges which the DSU interpretation margin leaves open for accomplishing their job which is to find a ‘positive solution’. Worse, judicial incoherence could return to WTO dispute settlement like a boomerang and damage the credibility and thus the level of acceptance of the multilateral trading system per se.
Resumo:
We propose a method to acquire 3D light fields using a hand-held camera, and describe several computational photography applications facilitated by our approach. As our input we take an image sequence from a camera translating along an approximately linear path with limited camera rotations. Users can acquire such data easily in a few seconds by moving a hand-held camera. We include a novel approach to resample the input into regularly sampled 3D light fields by aligning them in the spatio-temporal domain, and a technique for high-quality disparity estimation from light fields. We show applications including digital refocusing and synthetic aperture blur, foreground removal, selective colorization, and others.