998 resultados para Transient complexes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation describes studies on two multinucleating ligand architectures: the first scaffold was designed to support tricopper complexes, while the second platform was developed to support tri- and tetrametallic clusters.

In Chapter 2, the synthesis of yttrium (and lanthanide) complexes supported by a tripodal ligand framework designed to bind three copper centers in close proximity is described. Tricopper complexes were shown to react with dioxygen in a 1:1 [Cu3]/O2 stoichiometry to form intermediates in which the O–O bond was fully cleaved, as characterized via UV-Vis spectroscopy and determination of the reaction stoichiometry. Pre-arrangement of the three Cu centers was pivotal to cooperative O2 activation, as mono-copper complexes reacted differently with dioxgyen. The reactivity of the observed intermediates was studied with various substrates (reductants, O-atom acceptors, H-atom donors, Brønsted acids) to determine their properties. In Chapter 3, the reactivity of the same yttrium-tricopper complex with nitric oxide was explored. Reductive coupling to form a trans-hyponitrite complex (characterized by X-ray crystallography) was observed via cooperative reactivity by an yttrium and a copper center on two distinct tetrametallic units. The hyponitrite complex was observed to release nitrous oxide upon treatment with a Brønsted acid, supporting its viability as an intermediate in nitric oxide reduction to nitrous oxide.

In Chapter 4, a different multinucleating ligand scaffold was employed to synthesize heterometallic triiron clusters containing one oxide and one hydroxide bridges. The effects of the redox-inactive, Lewis acidic heterometals on redox potential was studied by cyclic voltammetry, unveiling a linear correlation between redox potential and heterometal Lewis acidity. Further studies on these complexes showed that the Lewis acidity of the redox-inactive metals also affected the oxygen-atom transfer reactivity of these clusters. Comparisons of this reactivity with manganese systems, collaborative efforts to reassign the structures of related manganese oxo-hydroxo clusters, and synthetic attempts to access related dioxo clusters are also described.

In Appendix A, ongoing efforts to synthesize new clusters supported by the same multinucleating ligand platform are described. Studies of novel approaches towards ligand exchange in tetrametallic clusters and incorporation of new supporting and bridging ligand motifs in trinuclear complexes are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Part I

The electric birefringence of dilute DNA solutions has been studied in considerable detail and on a large number of samples, but no new and reliable information was discovered concerning the tertiary structure of DNA. The large number of variables which effect the birefringence results is discussed and suggestions are made for further work on the subject.

The DNA molecules have been aligned in a rapidly alternating (10 to 20 kc/sec) square wave field confirming that the orientation mechanism is that of counterion polarization. A simple empirical relation between the steady state birefringence, Δnst, and the square of the electric field, E, has been found: Δnst = E2/(a E2 + b), where a = 1/Δns and b = (E2/Δnst)E→o. Δns is the birefringence extrapolated to infinite field strength.

The molecules show a distribution of relaxation times from 10-4 to 0.2 sec, which is consistent with expectations for flexible coil molecules. The birefringence and the relaxation times decrease with increasing salt concentrations. They also depend on the field strength and pulse duration in a rather non-reproducible manner, which may be due in part to changes in the composition of the solution or in the molecular structure of the DNA (other than denaturation). Further progress depends on the development of some control over these effects.

Part II

The specificity of the dissociation of reconstituted and native deoxyribonucleohistones (DNH) by monovalent salt solutions has been investigated. A novel zone ultracentrifugation method is used in which the DNH is sedimented as a zone through a preformed salt gradient, superimposed on a stabilizing D2O (sucrose) density gradient. The results, obtained by scanning the quartz sedimentation tubes in a spectrophotometer, were verified by the conventional, preparative sedimentation technique. Procedures are discussed for the detection of microgram quantities of histones, since low concentrations must be used to prevent excessive aggregation of the DNH.

The data show that major histone fractions are selectively dissociated from DNH by increasing salt concentrations: Lysine rich histone (H I) dissociates gradually between 0.1 and 0.3 F, slightly lysine rich histone (H II) dissociates as a narrow band between 0.35 and 0.5 F, and arginine rich histone (H III, H IV) dissociates gradually above 0.5 F NaClO4.

The activity of the partially dissociated, native DNH in sustaining RNA synthesis, their mobility and their unusual heat denaturation and renaturation behavior are described. The two-step melting behavior of the material indicates that the histones are non-randomly distributed along the DNA, but the implications are that the uncovered regions are not of gene-size length.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The activation of Fe-coordinated N2 via the formal addition of hydrogen atom equivalents is explored in this thesis. These reactions may occur in nitrogenase enzymes during the biological conversion of N2 to NH3. To understand these reactions, the N2 reactivity of a series of molecular Fe(N2) platforms is investigated. A trigonal pyramidal, carbon-ligated FeI complex was prepared that displays a similar geometry to that of the resting state 'belt' Fe atoms of nitrogenase. Upon reduction, this species was shown to coordinate N2, concomitant with significant weakening of the C-Fe interaction. This hemilability of the axial ligand may play a critical role in mediating the interconversion of Fe(NxHy) species during N2 conversion to NH3. In fact, a trigonal pyramidal borane-ligated Fe complex was shown to catalyze this transformation, generating up to 8.49 equivalents of NH3. To shed light on the mechanistic details of this reaction, protonation of a borane-ligated Fe(N2) complex was investigated and found to give rise to a mixture of species that contains an iron hydrazido(2-) [Fe(NNH2)] complex. The identification of this species is suggestive of an early N-N bond cleavage event en route to NH3 production, but the highly-reactive nature of this complex frustrated direct attempts to probe this possibility. A structurally-analogous silyl-ligated Fe(N2) complex was found to react productively with hydrogen atom equivalents, giving rise to an isolable Fe(NNH2) species. Spectroscopic and crystallographic studies benefited from the enhanced stability of this complex relative to the borane analogue. One-electron reduction of this species initiates a spontaneous disproportionation reaction with an iron hydrazine [Fe(NH2NH2)] complex as the predominant reaction product. This transformation provides support for an Fe-mediated N2 activation mechanism that proceeds via a late N-N bond cleavage. In hopes of gaining more fundamental insight into these reactions, a series of Fe(CN) complexes were prepared and reacted with hydrogen-atom equivalents. Significant quantities of CH4 and NH3 are generated in these reactions as a result of complete C-N bond activation. A series of Fe(CNHx) were found to be exceptionally stable and may be intermediates in these reactions. The stability of these compounds permitted collection of thermodynamic parameters pertinent to the unique N-H bonds. This data is comparatively discussed with the theoretically-predicted data of the N2-derived Fe(NNHx) species. Exceptionally-weak N-H bond enthalpies are found for many of these compounds, and sheds light on their short-lived nature and tendency to evolve H2. As a whole, these works both establish and provide a means to understand Fe-mediated N2 activation via the addition of hydrogen atom equivalents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation focuses on the incorporation of non-innocent or multifunctional moieties into different ligand scaffolds to support one or multiple metal centers in close proximity. Chapter 2 focuses on the initial efforts to synthesize hetero- or homometallic tri- or dinuclear metal carbonyl complexes supported by para-terphenyl diphosphine ligands. A series of [M2M’(CO)4]-type clusters (M = Ni, Pd; M’ = Fe, Co) could be accessed and used to relate the metal composition to the properties of the complexes. During these studies it was also found that non-innocent behavior was observed in dinuclear Fe complexes that result from changes in oxidation state of the cluster. These studies led to efforts to rationally incorporate central arene moieties capable managing both protons and electrons during small molecule activation.

Chapter 3 discusses the synthesis of metal complexes supported by a novel para-terphenyl diphosphine ligand containing a non-innocent 1,4-hydroquinone moiety as the central arene. A Pd0-hydroquinone complex was found to mediate the activation of a variety of small molecules to form the corresponding Pd0-quinone complexes in a formal two proton ⁄ two electron transformation. Mechanistic investigations of dioxygen activation revealed a metal-first activation process followed by subsequent proton and electron transfer from the ligand. These studies revealed the capacity of the central arene substituent to serve as a reservoir for a formal equivalent of dihydrogen, although the stability of the M-quinone compounds prevented access to the PdII-quinone oxidation state, thus hindering of small molecule transformations requiring more than two electrons per equivalent of metal complex.

Chapter 4 discusses the synthesis of metal complexes supported by a ligand containing a 3,5-substituted pyridine moiety as the linker separating the phenylene phosphine donors. Nickel and palladium complexes supported by this ligand were found to tolerate a wide variety of pyridine nitrogen-coordinated electrophiles which were found to alter central pyridine electronics, and therefore metal-pyridine π-system interactions, substantially. Furthermore, nickel complexes supported by this ligand were found to activate H-B and H-Si bonds and formally hydroborate and hydrosilylate the central pyridine ring. These systems highlight the potential use of pyridine π-system-coordinated metal complexes to reversibly store reducing equivalents within the ligand framework in a manner akin to the previously discussed 1,4-hydroquinone diphosphine ligand scaffold.

Chapter 5 departs from the phosphine-based chemistry and instead focuses on the incorporation of hydrogen bonding networks into the secondary coordination sphere of [Fe44-O)]-type clusters supported by various pyrazolate ligands. The aim of this project is to stabilize reactive oxygenic species, such as oxos, to study their spectroscopy and reactivity in the context of complicated multimetallic clusters. Herein is reported this synthesis and electrochemical and Mössbauer characterization of a series of chloride clusters have been synthesized using parent pyrazolate and a 3-aminophenyl substituted pyrazolate ligand. Efforts to rationally access hydroxo and oxo clusters from these chloride precursors represents ongoing work that will continue in the group.

Appendix A discusses attempts to access [Fe3Ni]-type clusters as models of the enzymatic active site of [NiFe] carbon monoxide dehydrogenase. Efforts to construct tetranuclear clusters with an interstitial sulfide proved unsuccessful, although a (μ3-S) ligand could be installed through non-oxidative routes into triiron clusters. While [Fe3Ni(μ4-O)]-type clusters could be assembled, accessing an open heterobimetallic edge site proved challenging, thus prohibiting efforts to study chemical transformations, such as hydroxide attack onto carbon monoxide or carbon dioxide coordination, relevant to the native enzyme. Appendix B discusses the attempts to synthesize models of the full H-cluster of [FeFe]-hydrogenase using a bioinorganic approach. A synthetic peptide containing three cysteine donors was successfully synthesized and found to chelate a preformed synthetic [Fe4S4] cluster. However, efforts to incorporate the diiron subsite model complex proved challenging as the planned thioester exchange reaction was found to non-selectively acetylate the peptide backbone, thus preventing the construction of the full six-iron cluster.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Part I. Proton Magnetic Resonance of Polynucleotides and Transfer RNA.

Proton magnetic resonance was used to follow the temperature dependent intramolecular stacking of the bases in the polynucleotides of adenine and cytosine. Analysis of the results on the basis of a two state stacked-unstacked model yielded values of -4.5 kcal/mole and -9.5 kcal/mole for the enthalpies of stacking in polyadenylic and polycytidylic acid, respectively.

The interaction of purine with these molecules was also studied by pmr. Analysis of these results and the comparison of the thermal unstacking of polynucleotides and short chain nucleotides indicates that the bases contained in stacks within the long chain poly nucleotides are, on the average, closer together than the bases contained in stacks in the short chain nucleotides.

Temperature and purine studies were also carried out with an aqueous solution of formylmethionine transfer ribonucleic acid. Comparison of these results with the results of similar experiments with the homopolynucleotides of adenine, cytosine and uracil indicate that the purine is probably intercalating into loop regions of the molecule.

The solvent denaturation of phenylalanine transfer ribonucleic acid was followed by pmr. In a solvent mixture containing 83 volume per cent dimethylsulf oxide and 17 per cent deuterium oxide, the tRNA molecule is rendered quite flexible. It is possible to resolve resonances of protons on the common bases and on certain modified bases.

Part II. Electron Spin Relaxation Studies of Manganese (II) Complexes in Acetonitrile.

The electron paramagnetic resonance spectra of three Mn+2 complexes, [Mn(CH3CN)6]+2, [MnCl4]-2, and [MnBr4]-2, in acetonitrile were studied in detail. The objective of this study was to relate changes in the effective spin Hamiltonian parameters and the resonance line widths to the structure of these molecular complexes as well as to dynamical processes in solution.

Of the three systems studied, the results obtained from the [Mn(CH3CN)6]+2 system were the most straight-forward to interpret. Resonance broadening attributable to manganese spin-spin dipolar interactions was observed as the manganese concentration was increased.

In the [MnCl4]-2 system, solvent fluctuations and dynamical ion-pairing appear to be significant in determining electron spin relaxation.

In the [MnBr4]-2 system, solvent fluctuations, ion-pairing, and Br- ligand exchange provide the principal means of electron spin relaxation. It was also found that the spin relaxation in this system is dependent upon the field strength and is directly related to the manganese concentration. A relaxation theory based on a two state collisional model was developed to account for the observed behavior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Part I. Complexes of Biological Bases and Oligonucleotides with RNA

The physical nature of complexes of several biological bases and oligonucleotides with single-stranded ribonucleic acids have been studied by high resolution proton magnetic resonance spectroscopy. The importance of various forces in the stabilization of these complexes is also discussed.

Previous work has shown that purine forms an intercalated complex with single-stranded nucleic acids. This complex formation led to severe and stereospecific broadening of the purine resonances. From the field dependence of the linewidths, T1 measurements of the purine protons and nuclear Overhauser enhancement experiments, the mechanism for the line broadening was ascertained to be dipole-dipole interactions between the purine protons and the ribose protons of the nucleic acid.

The interactions of ethidium bromide (EB) with several RNA residues have been studied. EB forms vertically stacked aggregates with itself as well as with uridine, 3'-uridine monophosphate and 5'-uridine monophosphate and forms an intercalated complex with uridylyl (3' → 5') uridine and polyuridylic acid (poly U). The geometry of EB in the intercalated complex has also been determined.

The effect of chain length of oligo-A-nucleotides on their mode of interaction with poly U in D20 at neutral pD have also been studied. Below room temperatures, ApA and ApApA form a rigid triple-stranded complex involving a stoichiometry of one adenine to two uracil bases, presumably via specific adenine-uracil base pairing and cooperative base stacking of the adenine bases. While no evidence was obtained for the interaction of ApA with poly U above room temperature, ApApA exhibited complex formation of a 1:1 nature with poly U by forming Watson-Crick base pairs. The thermodynamics of these systems are discussed.

Part II. Template Recognition and the Degeneracy of the Genetic Code

The interaction of ApApG and poly U was studied as a model system for the codon-anticodon interaction of tRNA and mRNA in vivo. ApApG was shown to interact with poly U below ~20°C. The interaction was of a 1:1 nature which exhibited the Hoogsteen bonding scheme. The three bases of ApApG are in an anti conformation and the guanosine base appears to be in the lactim tautomeric form in the complex.

Due to the inadequacies of previous models for the degeneracy of the genetic code in explaining the observed interactions of ApApG with poly U, the "tautomeric doublet" model is proposed as a possible explanation of the degenerate interactions of tRNA with mRNA during protein synthesis in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Part I.

The stoichiometry and kinetics of the reaction between Co(CN5H3- and HgX2 (X = CN, OH) have been investigated. The products of the reaction are two new complexes, [(NC)5Co-HgX]3- and [(NC)5Co-Hg-Co(CN)5]6-, whose spectra are reported. The kinetic measurements produced a value for the forward rate constant of the reaction Co(CN)5H3- + OH- k1/k-1 Co(CN)54- +H2O, k1 = (9.7 ± 0.8) x 10-2 M-1 sec-1 at 24°C, and an equilibrium constant for the reaction K = 10-6 M-1.

Part II.

Unusually large and sharp "adsorption waves" appear in cyclic voltammograms of Co(CN)53- and several cobalt(III) pentacyano complexes at stationary mercury electrodes. The nature of the adsorbed species and the reasons for the absence of the adsorption waves in polarograms taken with a d.m.e. have been examined. The data are compatible with the adsorption, in all cases, of a coordinatively unsaturated cobalt(II) complex, Co(CN)42-, by means of a cobalt-mercury bond. When the resulting adsorbed complex is reduced, a series of subsequent chemical and electrode reactions is initiated in which three faradays of charge are consumed for each mole of adsorbed complex. The adsorption of the anionic complex strongly retards the reduction of other negatively charged complexes.

Part III.

A number of formal redox potentials for RuIII (NH3)5L + e = RuII (NH3)5L and RuIII(NH3)4L2 + e = RuII (NH3)4L2 (where L is various ligands) has been measured by cyclic voltammetry, potentiometry, and polarography and are discussed in terms of the properties of the ligands, such as π-accepting capability. Reduction of coordinated pyrazine in the complexes, Ru(NH3)5 Pz2+, cis- and trans-Ru(NH3)4Pz22+, on a mercury electrode has been observed. The behavior of this reduction in various acidity of the solution as well as the reoxidation of the reduction products are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three kinds of new nickel(II) complexes of alpha-isoxazolylazo-beta-diketones with blue-violet light absorption were synthesized. Their structures were postulated based on elemental analysis, MS and FT-IR spectra. Smooth films on K9 glass substrates were prepared using the spin-coating method. The absorption properties and thermal stability of these complexes were discussed. The static optical recording test for high density digital versatile disc-recordable (HD-DVD-R) system was also studied. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some kinds of rare earth beta-diketone complexes with blue-violet light absorption edge were synthesized using the ligands of thenoyltrifluoroacctone (HTTA), 2, 2'-dipyridyl (BIPY) and different metal ions (Gd3+, Sm3+ and La3+). Their contents, structures and optoelectronic parameters were monitored by elemental analysis, MS, IR and UV spectra. The solubility of rare earth beta-diketone complexes in 2, 2, 3, 3-tetrafluoro-1-propanol (TFP) and absorption properties of their films in the region 300-800 nm were measured. The influence on the difference of absorption maximum from rare earth beta-diketone complexes to beta-diketone ligand by different metal ions was studied. In addition, the thermal stability of rare earth beta-diketone complexes was also reported. (C) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two new azo dyes of alpha-isoxazolylazo-beta-dilcetones and their Ni(II) and Cu(II) complexes with blue-violet light wavelength were synthesized using a coupling component, different diazo components and metal (II) ions (Ni2+ and Cu2+). Based on the elemental analysis, MS spectra and FT-IR spectral analyses, azo dyes were unequivocally shown to exist as hydrazoketo and azoenol forms which were respectively obtained from the solution forms and from the solid forms. The action of sodium methoxide (NaOMe) on azo dyes in solutions converts hydrazoketo form into azoenol form, so azo dyes are coordinated with metal (II) ions as co-ligands in the azoenol forms. The solubility of all the compounds in common organic solvents such as 2,2,3,3-tetrafluoro-1-propanol (TFP) or chloroform (CHCl3) and absorption properties of spin-coating thin films were measured. The difference of absorption maxima from the complexes to their ligands was discussed. In addition, the TG analysis of the complexes was also determined, and their thermal stability was evaluated. It is found that these new metal (II) complexes had potential application for high-density digital versatile disc-recordable (HD-DVD-R) system due to their good solubility in organic solvents, reasonable and controllable absorption spectra in blue-violet light region and high thermal stability. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Smooth thin films of three kinds of azo dyes of 2-(5'-tert-butyl-3'-azoxylisoxazole)-1, 3-diketones and their copper (II)-azo complexes were prepared by the spin-coating method. Absorption spectra of the thin films on a glass substrate in the 300-600 nm wavelength region were measured. Optical constants (complex refractive index N=n+ik) and thickness of the thin films prepared on single-crystal silicon substrate in the 300-600 nm wavelength region were investigated on rotating analyzer-polarizer type of scanning ellipsometer, and dielectric constants epsilon(epsilon=epsilon(1)+i epsilon(2)), absorption coefficients alpha as well as reflectance R of thin films were then calculated. In addition, one of the copper (II)-azo complex thin film prepared on glass substrate with an Ag reflective layer was also studied by atomic force microscopy (AFM) and static optical recording. AFM study shows that the copper (II)-azo complex thin film is very smooth and has a root mean square surface roughness of 1.89 nm. Static optical recording shows that the recording marks on the copper (II)-azo complex thin film are very clear and circular, and the size of the minimal recording marks can reach 200 nm. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel azo dye containing isoxazole ring and beta-diketone derivative (TIAD) and its two nickel (II) complexes (Ni (II)-ETIAD and Ni (II)-HTIAD) were synthesized in order to obtain a blue-violet light absorption and better thermal stability as a promising organic storage material for next generation of high density digital versatile disc-recordable (HD-DVD-R) systems that uses a high numerical aperture of 0.85 at 405 nm wavelength. Their structures were confirmed on the basis of elemental analysis, MS, FT-IR, UV-Vis and magnetic data. Their solubility in 2,2,3,3-tetrafluoro-1-propanol (TFP) and absorption properties of thin film were measured. The difference of absorption maximum from the complexes to their ligands was discussed. In addition, the TG analysis of the complexes was also determined, and their thermal stability was evaluated. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three kinds of metal(II) tetraazaporphyrin complexes with blue-violet and red light wavelength absorption were synthesized by refluxing tetraazaporphyrin ligand and different metal(II) ions, respectively. Their structures were confirmed by elemental analysis, LDI-TOF-MS, FT-IR and UV-Vis. The solubility of metal(II) tetraazaporphyrin complexes in organic solvents and absorption properties of their chloroform solution and films on K9 glass in the region 250-800 nm were measured. The influence on the difference of absorption maximum from metal(II) tetraazaporphyrin complexes to tetraazaporphyrin ligand by different metal(II) ions was studied. In addition, the thermal stability of the complexes was also evaluated. (c) 2006 Elsevier Ltd. All rights reserved.