962 resultados para Trace fossils


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Titanium and iron concentration data from the anoxic Cariaco Basin, off the Venezuelan coast, can be used to infer variations in the hydrological cycle over northern South America during the past 14,000 years with subdecadal resolution. Following a dry Younger Dryas, a period of increased precipitation and riverine discharge occurred during the Holocene 'thermal maximum'. Since ~5400 years ago, a trend toward drier conditions is evident from the data, with high-amplitude fluctuations and precipitation minima during the time interval 3800 to 2800 years ago and during the 'Little Ice Age'. These regional changes in precipitation are best explained by shifts in the mean latitude of the Atlantic Intertropical Convergence Zone (ITCZ), potentially driven by Pacific-based climate variability. The Cariaco Basin record exhibits strong correlations with climate records from distant regions, including the high-latitude Northern Hemisphere, providing evidence for global teleconnections among regional climates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Primary sulfides from cores of ODP Holes 158-957M, 158-957C, and 158-957H on the active TAG hydrothermal mound (Mid-Atlantic Ridge, 26°08'N) have been studied for concentrations of several chemical elements. Based on 262 microprobe analyses it has been found that the sulfides have extremely heterogeneous distribution of noble metals (Au, Ag, Pt, and Pd) and several associated elements (Hg, Co, and Se). Noble metals are arranged in the following order in terms of decreasing abundance, i.e. concentration level above detection limits (the number of analyses containing a specific element is given in parentheses): Au (65), Ag (46), Pt (21), and Pd (traces). The associated trace elements have the following series: Co (202), Hg (132), and Se (49). The main carriers of "invisible" portion of the noble metals are represented by pyrite (Au, Hg), marcasite and pyrite (Ag, Co), sphalerite and chalcopyrite (Pt, Pd), and chalcopyrite (Se). Noble metal distribution in sulfides reveals a lateral zonality: maximal concentrations and abundance of Au in chalcopyrite (or Pt and Ag in chalcopyrite and pyrite) increase from the periphery (Hole 957H) to the center (holes 957C and 957M) of the hydrothermal mound, while Au distribution in pyrite displays a reversed pattern. Co concentration increases with depth. Vertical zonality in distribution of the elements mentioned above and their response to evolution of ore genesis are under discussion in the paper.