863 resultados para Titanium plate miniplate
Resumo:
The physical and mechanical properties of metal matrix composites were improved by the addition of reinforcements. The mechanical properties of particulate-reinforced metal-matrix composites based on aluminium alloys (6061 and 7015) at high temperatures were studied. Titanium diboride (TiB2) particles were used as the reinforcement. All the composites were produced by hot extrusion. The tensile properties and fracture characteristics of these materials were investigated at room temperature and at high temperatures to determine their ultimate strength and strain to failure. The fracture surface was analysed by scanning electron microscopy. TiB2 particles provide high stability of the aluminium alloys (6061 and 7015) in the fabrication process. An improvement in the mechanical behaviour was achieved by adding TiB2 particles as reinforcement in both the aluminium alloys. Adding TiB2 particles reduces the ductility of the aluminium alloys but does not change the microscopic mode of failure, and the fracture surface exhibits a ductile appearance with dimples formed by coalescence.
Resumo:
In this research the mechanical behaviour of pure tungsten (W) and its alloys (2 wt.% Ti–0.47 wt.% Y2O3 and 4 wt.% Ti–0.5 wt.% Y2O3) is compared. These tungsten alloys, have been obtained by powder metallurgy. The yield strength, fracture toughness and elastic modulus have been studied in the temperature interval of 25 °C to 1000 °C. The results have shown that the addition of Ti substantially improves the bending strength and toughness of W, but it also dramatically increases the DBTT. On the other hand, the addition of 0.5% Y2O3, is enough to improve noticeably the oxidation behaviour at the higher temperatures. The grain size, fractography and microstructure are studied in these materials. Titanium is a good grain growth inhibitor and effective precursor of liquid phase in HIP. The simultaneous presence of Y2O3 and Ti permits to obtain materials with low pores presence
Resumo:
Plate-bandes are straight masonry arches (they are called, also, flat arches or lintel arches). Ideally they have the surfaces of extrados and intrados plane and horizontal. The stones or bricks have radial joints converging usually in one centre. The voussoirs have the form of wedges and in French they are called "claveaux". A plate-bande is, in fact, a lintel made of several stones and the proportions of lintels and plate-bandes are similar. Proportions of plate-bandes, that is the relationship between the thickness t and the span s (t/s)varies, typically between 1/4–1/3 in thick plate-bandes, and is less than 1/20 in the most slender ones. A ratio of circa 1/8 was usual in the 18th Century and follows a simple geometrical rule: the centre form with the intrados an equilateral triangle and the plate-bande should contain an arc of circle. The joints are usually plane, but in some cases present a «rebated» or «stepped» form. Plate-bandes exert an inclined thrust as any masonry arch. This thrust is usually very high and it requires either massive buttresses, or to be built in the middle of thick walls. Master builders and architects have tried since antiquity to calculate the abutment necessary for any arch. A modern architect or engineer will measure the arch thrust in units of force, kN or tons. Traditionally, the thrust has been measured as the size of the buttresses to resist it safely. Old structural rules, then, addressed the design problem establishing a relationship between the span and the depth of the buttress. These were empirical rules, particular for every type of arch or structure in every epoch. Thus, the typical gothic buttress is 1/4 of the vault span, but a Renaissance or baroque barrel vault will need more than 1/3 of the span. A plate-bande would require more than one half of the span; this is precisely the rule cited by the French engineer Gautier, who tried unsuccessfully to justify it by static reasons. They were used, typically, to form the lintels of windows or doors (1-2 m, typically); in Antiquity they were used, also, though rarely, at the gates of city walls or in niches (ca. 2 m, reaching 5.2 m). Plate-bandes may show particular problems: it is not unusual that some sliding of the voussoirs can be observed, particularly in thick plate-bandes. The stepped joints on Fig. 1, left, were used to avoid this problem. There are other «hidden» methods, like iron cramps or the use of stone wedges, etc. In seismic zones these devices were usual. Another problem relates to the deformation; a slight yielding of the abutments, or even the compression of the mortar joints, may lead to some cracking and the descent of the central keystone. Even a tiny descent will convert the original straight line of the intrados in a broken line with a visible «kink» or angle in the middle. Of course, both problems should be avoided. Finally, the wedge form of the voussoirs lead to acute angles in the stones and this can produce partial fractures; this occurs usually at the inferior border of the springers at the abutments. It follows, that to build a successful plate-bande is not an easy matter. Also, the structural study of plate-bandes is far from simple, and mechanics and geometry are related in a particular way. In the present paper we will concentrate on the structural aspects and their constructive consequences, with a historical approach. We will outline the development of structural analysis of plate-bandes from ca. 1700 until today. This brief history has a more than purely academic interest. Different approaches and theories pointed to particular problem, and though the solution given may have been incorrect, the question posed was often pertinent. The paper ends with the application of modern Limit Analysis of Masonry Structures, developed mainly by professor Heyman in the last fifty years. The work aims, also, to give some clues for the actual architect and engineer involved in the analysis or restoration of masonry buildings.
Resumo:
A novel photovoltaic concentrator enables highly uniform irradiance on a small number of efficient solar cells. The maximum electrical power of a photovoltaic (PV) energy installation depends on three factors: the available irradiance, the size of the systems collecting sunlight, and the rate at which the device transforms light into electricity (the conversion efficiency). Developers can maximize the irradiance by carefully selecting the site and orientation of the solar facility. But they can only expand their sunlight collection systems for standard flat plate PV devices by increasing the number of solar cells, at greater cost. Here, we consider the advantages of an alternative PV system that produces more energy without increasing the number of cells used (actually, reducing it), by improving the conversion rates.We also present a new device that may enhance the commercial viability of such technologies.
Resumo:
Intermediate band formation on silicon layers for solar cell applications was achieved by titanium implantation and laser annealing. A two-layer heterogeneous system, formed by the implanted layer and by the un-implanted substrate, was formed. In this work, we present for the first time electrical characterization results which show that recombination is suppressed when the Ti concentration is high enough to overcome the Mott limit, in agreement with the intermediate band theory. Clear differences have been observed between samples implanted with doses under or over the Mott limit. Samples implanted under the Mott limit have capacitance values much lower than the un-implanted ones as corresponds to a highly doped semiconductor Schottky junction. However, when the Mott limit is surpassed, the samples have much higher capacitance, revealing that the intermediate band is formed. The capacitance increasing is due to the big amount of charge trapped at the intermediate band, even at low temperatures. Ti deep levels have been measured by admittance spectroscopy. These deep levels are located at energies which vary from 0.20 to 0.28?eV below the conduction band for implantation doses in the range 1013-1014 at./cm2. For doses over the Mott limit, the implanted atoms become nonrecombinant. Capacitance voltage transient technique measurements prove that the fabricated devices consist of two-layers, in which the implanted layer and the substrate behave as an n+/n junction.
Resumo:
We have fabricated titanium and vanadium supersaturated silicon layers on top of a silicon substrate by means of ion implantation and pulsed laser melting processes. This procedure has proven to be suitable to fabricate an intermediate band (IB) material, i.e. a semiconductor material with a band of allowed states within the bandgap. Sheet resistance and Hall mobility measurements as a function of the temperature show an unusual behavior that has been well explained in the framework of the IB material theory, supposing that we are dealing with a junction formed by the IB material top layer and the n-Si substrate. Using an analytical model that fits with accuracy the experimental sheet resistance and mobility curves, we have obtained the values of the exponential factor for the thermically activated junction resistance of the bilayer, showing important differences as a function of the implanted element. These results could allow us to engineer the IB properties selecting the implanted element depending on the required properties for a specific application.
Resumo:
This paper addresses two aspects of the behavior of interior reinforced concrete waffle flat plate?column connections under lateral loads: the share of the unbalanced moment between flexure and excentric shear, and the effect of the transverse beams. A non-linear finite element model (benchmark model) was developed and calibrated with the results of quasi-static cyclic tests conducted on a 3/5 scale specimen. First, from this numerical model, the portion cv of the unbalanced moment transferred by the excentricity of shear about the centroid of the critical sections defined by Eurocode 2 (EC-2) and by ACI 318-11 was calculated and compared with the share-out prescribed by these codes. It is found that while the critical section of EC-2 is consistent with the cv provided by this code, in the case of ACI 318-11, the value assigned to cv is far below (about 50% smaller) the actual one obtained with the numerical simulations. Second, from the benchmark model, seven additional models were developed by varying the depth D of the transverse beam over the thickness h of the plate. It was found that the ductility of the connection and the effective width of the plate can respectively be increased up to 50% and 10% by raising D/h to 2 and 1.5.
Resumo:
The target is to evaluate the mechanical behavior of Ti and La2O3 dispersed W alloy, processed by HIP and compare it with a reference pure-W. Tests were performed in both oxidant (air) and inert (vacuum) atmosphere in a temperature range from -196 to 1200 °C.
Resumo:
The most promising materials to be used as Plasma Facing Components(PFC),in the International Thermonuclear Experimental Reactor (ITER), are tungsten alloys. However these materials have to withstand extreme operating conditions such as those that will be used inside the reactor.
Resumo:
Small punch (SP) test techniques are typically used to study the mechanical properties of materials or components from miniature size specimens. This kind of test was originally developed to assess ductility loss in steel caused by irradiation or thermal treatment, particularly when the amount of metal was limited, but it soon proved to be a powerful method to estimate several properties.
Resumo:
Multilayered, counterflow, parallel-plate heat exchangers are analyzed numerically and theoretically. The analysis, carried out for constant property fluids, considers a hydrodynamically developed laminar flow and neglects longitudinal conduction both in the fluid and in the plates. The solution for the temperature field involves eigenfunction expansions that can be solved in terms of Whittaker functions using standard symbolic algebra packages, leading to analytical expressions that provide the eigenvalues numerically. It is seen that the approximate solution obtained by retaining the first two modes in the eigenfunction expansion provides an accurate representation for the temperature away from the entrance regions, specially for long heat exchangers, thereby enabling simplified expressions for the wall and bulk temperatures, local heat-transfer rate, overall heat-transfer coefficient, and outlet bulk temperatures. The agreement between the numerical and theoretical results suggests the possibility of using the analytical solutions presented herein as benchmark problems for computational heat-transfer codes.