915 resultados para Tin oxide, Nanoparticles, Dye-Sensitized Solar Cells


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Department of Physics, Cochin University of Science and Technology

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A comparative study on the anisole methylation with methanol over lanthanum-promoted Sn02 catalyst and its sulfate-doped analogue is presented. A maximum 2.6-xylenol selectivity of 82% was achieved at 400 degreeC under optimized conditions at an anisole conversion of 65% over lanthanum-promoted Sn02 catalyst. The sulfate modification resulted in the dealkylation of anisole to phenol followed by several unselective side reactions due to the creation of strong acid sites. The activity of lanthanum-modified tin oxide catalysts in the selective formation of 2.6-xylenol is ascribed to the presence of weak Lewis acid sites and comparatively stronger basic sites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Non-destructive testing (NDT) is the use of non-invasive techniques to determine the integrity of a material, component, or structure. Engineers and scientists use NDT in a variety of applications, including medical imaging, materials analysis, and process control.Photothermal beam deflection technique is one of the most promising NDT technologies. Tremendous R&D effort has been made for improving the efficiency and simplicity of this technique. It is a popular technique because it can probe surfaces irrespective of the size of the sample and its surroundings. This technique has been used to characterize several semiconductor materials, because of its non-destructive and non-contact evaluation strategy. Its application further extends to analysis of wide variety of materials. Instrumentation of a NDT technique is very crucial for any material analysis. Chapter two explores the various excitation sources, source modulation techniques, detection and signal processing schemes currently practised. The features of the experimental arrangement including the steps for alignment, automation, data acquisition and data analysis are explained giving due importance to details.Theoretical studies form the backbone of photothermal techniques. The outcome of a theoretical work is the foundation of an application.The reliability of the theoretical model developed and used is proven from the studies done on crystalline.The technique is applied for analysis of transport properties such as thermal diffusivity, mobility, surface recombination velocity and minority carrier life time of the material and thermal imaging of solar cell absorber layer materials like CuInS2, CuInSe2 and SnS thin films.analysis of In2S3 thin films, which are used as buffer layer material in solar cells. The various influences of film composition, chlorine and silver incorporation in this material is brought out from the measurement of transport properties and analysis of sub band gap levels.The application of photothermal deflection technique for characterization of solar cells is a relatively new area that requires considerable attention.The application of photothermal deflection technique for characterization of solar cells is a relatively new area that requires considerable attention. Chapter six thus elucidates the theoretical aspects of application of photothermal techniques for solar cell analysis. The experimental design and method for determination of solar cell efficiency, optimum load resistance and series resistance with results from the analysis of CuInS2/In2S3 based solar cell forms the skeleton of this chapter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main objective of the present study is to understand different mechanisms involved in the production and evolution of plasma by the pulsed laser ablation and radio frequency magnetron sputtering. These two methods are of particular interest, as these are well accomplished methods used for surface coatings, nanostructure fabrications and other thin film devices fabrications. Material science researchers all over the world are involved in the development of devices based on transparent conducting oxide (TCO) thin films. Our laboratory has been involved in the development of TCO devices like thin film diodes using zinc oxide (ZnO) and zinc magnesium oxide (ZnMgO), thin film transistors (TFT's) using zinc indium oxide and zinc indium tin oxide, and some electroluminescent (EL) devices by pulsed laser ablation and RF magnetron sputtering.In contrast to the extensive literature relating to pure ZnO and other thin films produced by various deposition techniques, there appears to have been relatively little effort directed towards the characterization of plasmas from which such films are produced. The knowledge of plasma dynamics corresponding to the variations in the input parameters of ablation and sputtering, with the kind of laser/magnetron used for the generation of plasma, is limited. To improve the quality of the deposited films for desired application, a sound understanding of the plume dynamics, physical and chemical properties of the species in the plume is required. Generally, there is a correlation between the plume dynamics and the structural properties of the films deposited. Thus the study of the characteristics of the plume contributes to a better understanding and control of the deposition process itself. The hydrodynamic expansion of the plume, the composition, and SIze distribution of clusters depend not only on initial conditions of plasma production but also on the ambient gas composition and pressure. The growth and deposition of the films are detennined by the thermodynamic parameters of the target material and initial conditions such as electron temperature and density of the plasma.For optimizing the deposition parameters of various films (stoichiometric or otherwise), in-situ or ex-situ monitoring of plasma plume dynamics become necessary for the purpose of repeatability and reliability. With this in mind, the plume dynamics and compositions of laser ablated and RF magnetron sputtered zinc oxide plasmas have been investigated. The plasmas studied were produced at conditions employed typically for the deposition of ZnO films by both methods. Apart from this two component ZnO plasma, a multi-component material (lead zirconium titanate) was ablated and plasma was characterized.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bio-compatible magnetic fluids having high saturation magnetization find immense applications in various biomedical fields. Aqueous ferrofluids of superparamagnetic iron oxide nanoparticles with narrow size distribution, high shelf life and good stability is realized by controlled chemical co-precipitation process. The crystal structure is verified by X-ray diffraction technique. Particle sizes are evaluated by employing Transmission electron microscopy. Room temperature and low-temperature magnetic measurements were carried out with Superconducting Quantum Interference Device. The fluid exhibits good magnetic response even at very high dilution (6.28 mg/cc). This is an advantage for biomedical applications, since only a small amount of iron is to be metabolised by body organs. Magnetic field induced transmission measurements carried out at photon energy of diode laser (670 nm) exhibited excellent linear dichroism. Based on the structural and magnetic measurements, the power loss for the magnetic nanoparticles under study is evaluated over a range of radiofrequencies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Investigations on thin films that started decades back due to scientific curiosity in the properties of a two-dimensional solid, has developed into a leading research field in recent years due to the ever expanding applications of the thin films in the fann of a variety of active and passive microminiaturized components and devices, solar cells, radiation sowces and detectors, magnetic memory devices, interference filters, refection and antireflection coatings etc. [1]. The recent environment and energy resource concerns have aroused an enonnous interest in the study of materials in thin film form suitable for renewable energy sources such as photovoltaic devices. Recognition of the immense potential applications of the chalcopyrites that can fonn homojunctions or heterojunctions for solar cell fabrication has attracted many researchers to extensive and intense research on them. In this thesis, we have started with studies performed on CuInSe, thin films, a technologically well recognized compound belonging to the l•ill-VI family of semiconductors and have riveted on investigations on the preparation and characterization of compoWlds Culn3Se5. Culn5Seg and CuIn7Se12, an interesting group of compounds related to CuInSe2 called Ordered Vacancy Compounds, having promising applications in photovoltaic devices. A pioneering work attempted on preparing and characterizing the compound Culn7Sel2 is detailed in the chapters on OVC's. Investigation on valence band splitting in avc's have also been attempted for the first time and included as the last chapter in the thesis. Some of the salient features of the chalcopyrite c.ompounds are given in the next section .of this introductory chapter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The investigation of physical properties of matter has progressed so much during the last hundred years. Today physics is divided in to a large distinct group of special branches. These branches are distinguished by the particular area studied, method of investigation and so on. An independent and important branch that has developed is the physics ofthin films.Any object in solid or liquid form with one of its dimensions very much smaller than that of the other two may be called a thin film. It is having only one common property, namely, one of their dimensions is very small, though all their physical properties may be different. Thin layers of oil, floating on the surface of water, with their fascinating colours, have attracted men’s curiosity from time immemorial. The earliest application of thin films was the protective coatings in the form of paints. A thin layer of tin has been used from ancient times to protect copper utensils from corrosion. Indium thin films are used in certain applications on account of their good lubricating property. Relay contacts are coated with thin films of rare earth metals in order to prevent burning due to arcing. Hard coatings are also available using diamond like carbon (i-carbon). The basic properties of thin films are of considerable interest because of their potential applications in various fields of science and technology

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The carrier transport mechanism of polyaniline (PA) thin films prepared by radio frequency plasma polymerization is described in this paper. The mechanism of electrical conduction and carrier mobility of PA thin films for different temperatures were examined using the aluminium–PA–aluminium (Al–PA–Al) structure. It is found that the mechanism of carrier transport in these thin films is space charge limited conduction. J –V studies on an asymmetric electrode configuration using indium tin oxide (ITO) as the base electrode and Al as the upper electrode (ITO–PA–Al structure) show a diode-like behaviour with a considerable rectification ratio

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two-dimensional electronic systems play a crucial role in modern electronics and offer a multitude of opportunities to study the fundamental phenomena at low dimensional physics. A quantum well heterostructure based on polyaniline (P) and iodine doped polyaniline (I) thin films were fabricated using radio frequency plasma polymerization on indium tin oxide coated glass plate. Scanning probe microscopy and scanning electron microscopy studies were employed to study the morphology and roughness of the polymer thin films. Local electronic density of states (LDOS) of the P–I–P heterostructures is probed using scanning tunnelling spectroscopy (STS). A step like LDOS is observed in the P–I–P heterostructure and is attributed to the quantum well confinement of electrons in the polymer heterostructure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Incorporation of silver ions into a dye-sensitized poly(vinyl alcohol)/acrylamide photopolymer is observed to give better performance compared to other metal-ion-doped photopolymer holographic recording media. Plane-wave transmission gratings were recorded in the photopolymer films using a He–Ne laser, and various holographic parameters were optimized so as to explore maximum potential of the material for various holographic applications. Silver-doped films showed good energy sensitivity, and gratings recorded in optimized film exhibited a diffraction efficiency of more than 75%. The potential of the material for holographic data storage applications is also studied using peristrophic multiplexing

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In general, linear- optic, thermo- optic and nonlinear- optical studies on CdSe QDs based nano uids and their special applications in solar cells and random lasers have been studied in this thesis. Photo acous- tic and thermal lens studies are the two characterization methods used for thermo- optic studies whereas Z- scan method is used for nonlinear- optical charecterization. In all these cases we have selected CdSe QDs based nano uid as potential photonic material and studied the e ect of metal NPs on its properties. Linear optical studies on these materials have been done using vari- ous characterization methods and photo induced studies is one of them. Thermal lens studies on these materials give information about heat transport properties of these materials and their suitability for applica- tions such as coolant and insulators. Photo acoustic studies shows the e ect of light on the absorption energy levels of the materials. We have also observed that these materials can be used as optical limiters in the eld of nonlinear optics. Special applications of these materials have been studied in the eld of solar cell such as QDSSCs, where CdSe QDs act as the sensitizing materials for light harvesting. Random lasers have many applications in the eld of laser technology, in which CdSe QDs act as scattering media for the gain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polymers with conjugated π-electron backbone display unusual electronic properties such as low energy optical transition, low ionization potentials, and high electron affinities. The properties that make these materials attractive include a wide range of electrical conductivity, mechanical flexibility and thermal stability. Some of the potential applications of these conjugated polymers are in sensors, solar cells, field effect transistors, field emission and electrochromic displays, supercapacitors and energy storage. With recent advances in the stability of conjugated polymer materials, and improved control of properties, a growing number of applications are currently being explored. Some of the important applications of conducting polymers include: they are used in electrostatic materials, conducting adhesives, shielding against electromagnetic interference (EMI), artificial nerves, aircraft structures, diodes, and transistors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Das Ziel der vorliegenden Arbeit war die Synthese und Charakterisierung von donor-funktionalisierten Spiro-Perylencarboximiden, welche für den Einsatz in optoelektronischen Bauelementen wie z.B. organischen Phototransistoren, Feldeffekttransistoren oder Solarzellen vorgesehen sind. Die donorfunktionalisierten Spiro-Perylencarboximide stellen kovalent gebundene Donor-Akzeptor-Verbindungen dar, die unter geeigneter Belichtung einen ladungsgetrennten Zustand bilden können. Die Verbindungen wurden aus unterschiedlichen Spiroamin- und Perylenanhydrid-Edukten synthetisiert, die im Baukastenprinzip zu den entsprechenden Zielverbindungen umgesetzt wurden. Mittels unterschiedlicher Charakterisierungsmethoden (z.B. DSC, TGA, CV, Absorptions- und Fluoreszenzmessungen) wurden die Eigenschaften der neuartigen Zielverbindungen untersucht. Im Rahmen der Arbeit wurden vier neue Spiroamin-Edukte erstmalig synthetisiert und charakterisiert. Sie wurden durch Reduktion aus den bisher noch nicht beschriebenen Nitroverbindungen bzw. mittels Pd-katalysierter Kreuzkupplung (Hartwig-Buchwald-Reaktion) aus einer halogenierten Spiroverbindung erhalten. Als Perylenanhydrid-Edukt wurde erstmals eine perfluorierte Perylenanhydrid-Imid-Verbindung hergestellt. Aus den Spiroamin- und Perylenanhydrid-Edukten wurden insgesamt neun neue, donorfunktionalisierte Spiro-Perylencarboximide synthetisiert. Zusätzlich wurden sechs neuartige Spiro-Perylencarboximide ohne Diphenylamin-Donor hergestellt, die als Vergleichsverbindungen dienten. Die donorfunktionalisierten Spiro-Perylencarboximide besitzen eine Absorption im UV- und sichtbaren Spektralbereich, wobei hohe Extinktionskoeffizienten erreicht werden. Die Verbindungen zeigen in verdünnter Lösung (sowohl in polaren als auch in unpolaren Lösungsmitteln) eine Fluoreszenzquantenausbeute unter 1 %, was auf einen effizienten Ladungstransfer zurückzuführen ist. Alle donorfunktionalisierten Spiro-Perylencarboximide zeigen in den CV-Messungen reversibles Verhalten. Mittels CV-Messungen und optischer Methode konnten die HOMO- und LUMO-Lagen der jeweiligen Molekülhälften berechnet und das Fluoreszenzverhalten der Verbindungen erklärt werden. Ebenso konnten die Auswirkungen von unterschiedlichen Substituenten auf die jeweiligen HOMO-/LUMO-Lagen näher untersucht werden. Die durchgeführten DSC- und TGA-Untersuchungen zeigen hohe morphologische und thermische Stabilität der Verbindungen, wobei Glasübergangstemperaturen > 211 °C, Schmelztemperaturen > 388 °C und Zersetzungstemperaturen > 453 °C gemessen wurden. Diese Werte sind höher als die bisher in der Literatur für ähnliche spiroverknüpfte Verbindungen berichteten. Als besonders interessant haben sich die unsymmetrischen donorfunktionalisierten Spiro-Perylencarboximide herausgestellt. Sie zeigen hohe Löslichkeit in gängigen Lösungsmitteln, sind bis zu einer Molmasse < 1227 g/mol aufdampfbar und bilden stabile, amorphe Schichten.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermochromic windows are able to modulate their transmittance in both the visible and the near-infrared field as a function of their temperature. As a consequence, they allow to control the solar gains in summer, thus reducing the energy needs for space cooling. However, they may also yield a reduction in the daylight availability, which results in the energy consumption for indoor artificial lighting being increased. This paper investigates, by means of dynamic simulations, the application of thermochromic windows to an existing office building in terms of energy savings on an annual basis, while also focusing on the effects in terms of daylighting and thermal comfort. In particular, due attention is paid to daylight availability, described through illuminance maps and by the calculation of the daylight factor, which in several countries is subject thresholds. The study considers both a commercially available thermochromic pane and a series of theoretical thermochromic glazing. The expected performance is compared to static clear and reflective insulating glass units. The simulations are repeated in different climatic conditions, showing that the overall energy savings compared to clear glazing can range from around 5% for cold climates to around 20% in warm climates, while not compromising daylight availability. Moreover the role played by the transition temperature of the pane is examined, pointing out an optimal transition temperatures that is irrespective of the climatic conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bradykinin-potentiating peptides (BPPs) or proline-rich oligopeptides (PROs) isolated from the venom glands of Bothrops jararaca (Bj) were the first natural inhibitors of the angiotensin-converting enzyme (ACE) described. Bj-PRO-5a (< EKWAP), a member of this structurally related peptide family, was essential for the development of captopril, the first site-directed ACE inhibitor used for the treatment of human hypertension. Nowadays, more Bj-PROs have been identified with higher ACE inhibition potency compared to Bj-PRO-5a. However, despite its modest inhibitory effect of ACE inhibition, Bj-PRO-5a reveals strong bradykinin-potentiating activity, suggesting the participation of other mechanisms for this peptide. In the present study, we have shown that Bj-PRO-5a induced nitric oxide (NO) production depended on muscarinic acetylcholine receptor M1 subtype (mAchR-M1) and bradykinin B(2) receptor activation, as measured by a chemiluminescence assay using a NO analyzer. Intravital microscopy based on transillumination of mice cremaster muscle also showed that both bradykinin B(2) receptor and mAchR-M1 contributed to the vasodilatation induced by Bj-PRO-5a. Moreover, Bj-PRO-5a-mediated vasodilatation was completely blocked in the presence of a NO synthase inhibitor. The importance of this work lies in the definition of novel targets for Bj-PRO-5a in addition to ACE, the structural model for captopril development. (C) 2011 Elsevier Inc. All rights reserved.