924 resultados para Time domain method
Resumo:
The vertical radiation loss of three-dimensional (3-D) microresonators is investigated by 3-D finite-difference time-domain (FDTD) simulation. The simulation shows that the vertical radiation causes an important loss in the microresonators with weak waveguiding, and result in decrease of the quality factors (Q-factors) of whispering-gallery (WG) modes. Through the simulation, we find that TM-like modes have much weaker vertical radiation loss than TE-like modes. High Q-factor TM-like modes are observed in the 3-D microresonators with weak vertical waveguiding, but the Q-factors of TE-like modes decrease greatly.
Resumo:
The mode characteristis of a microcylinders with center layer thickness 0.2 mu m and radius 1 mu m are investigated by the three-dimensional (31)) finite-difference time-domain (FDTD) technique and the Pade approximation. The mode quality factor (Q-factor) of the EH71 mode obtained by 3D FDTD increase with the increase of the refractive index of the cladding layer n(2) as n(2) smaller than 3.17, and can be as large as 2.4 x 10(4) as the vertical refractive index distribution is 3.17/3.4/3.17, which is much larger than that of the HE71 mode with the same vertical refractive index distribution.
Resumo:
Wide transmission dips are observed in the through spectra in microring and racetrack channel drop filters by two-dimensional finite-difference time-domain (FDTD) simulation. The transmission spectra, which reflect the coupling efficiency, are also calculated from the FDTD output as the pulse just travels one circle inside the resonator. The results indicate that the dips are caused by the dispersion of the coupling coefficient between the input waveguide and the resonator. In addition, a near-zero channel drop on resonance and a large channel drop off resonance are observed due to the near zero coupling coefficient and a large coupling coefficient, respectively. If the width of the input waveguide is different from that of the ring resonator, the oscillation of the coupling coefficient can be greatly suppressed.
Resumo:
In this paper, we focus on the dipole mode of the two-dimensional (2D) photonic crystal (PC) single point defect cavity (SPDC) lasers and we report the fabrication and characterization of 2D PC SPDC lasers with the structure of adjusted innermost air holes. The photonic band and cavity Q factors are simulated by means of plane wave expansion (PWE) and finite-difference time-domain (FDTD), respectively. In order to improve the optical confinement of the SPDC, the diameter of the innermost holes was adjusted. Different lasing performances are observed experimentally. The experimental results agree with the theoretical prediction very well. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
This paper presents a behavior model for PLL Frequency Synthesizer. All the noise sources are modeled with noise voltages or currents in time-domain. An accurate VCO noise model is introduced, including both thermal noise and 1/f noise. The behavioral model can be co-simulated with transistor level circuits with fast speed and provides more accurate phase noise and spurs prediction. Comparison shows that simulation results match very well with measurement results.
Resumo:
Based on the phase-conjugate polarization interference between two two-photon processes, we obtained an analytic closed form for the second-order or fourth-order Markovian stochastic correlation of the four-level attosecond sum-frequency polarization beat (FASPB) in the extremely Doppler-broadened limit. The homodyne-detected FASPB signal is shown to be particularly sensitive to the statistical properties of the Markovian stochastic light fields with arbitrary bandwidth. The different roles of the amplitude fluctuations and the phase fluctuations can be understood physically in the time-domain picture. The field correlation has a weak influence on the FASPB signal when the laser has narrow bandwidth. In contrast, when the laser has broadband linewidth, the FASPB signal shows resonant-nonresonant cross-correlation, and drastic difference for three Markovian stochastic fields. The maxima of the two two-photon signals are shifted from zero time delay to the opposite direction, and the signal exhibits damping oscillation when the laser frequency is off-resonant from the two-photon transition. A Doppler-free precision in the measurement of the energy-level sum can be achieved with an arbitrary bandwidth. As an attosecond ultrafast modulation process, it can be extended intrinsically to any sum frequency of energy levels.
Resumo:
时域反射仪(TDR)与频率反射仪(FDR)是目前最为先进,并且最具有发展前途的土壤含水量测量仪器。有便利、快捷、准确的优点。介绍了6种基于TDR或FDR原理的仪器对黄绵土含水量进行试验标定的方法与结果。标定结果表明:仪器的测量值与烘干法的测量值之间有一定的差异,CS616和Trime-T3烘干法测定结果接近,但是其余的4种仪器测定值均高于烘干法测定值,在应用这些仪器测定土壤含水量时需要进行标定。
Resumo:
以耐旱性玉米品种郑单958号为材料,采用两室分根土培装置,通过时域反射计(TDR)对上下土层土壤含水量进行控制和观测,研究施肥对干旱胁迫条件下玉米根系提水作用的影响.结果表明,玉米根系在土层上干下湿条件下(即上下层土壤存在一定水势差时)存在明显提水作用;玉米根系提水量在整个生育期呈单峰变化,并以吐丝期最大;上层土壤施肥可以调节玉米根系提水作用强弱,整个生育期根系总提水量表现为NP配施>单施P>CK>单施N,NP配施处理全生育期单株提水量(1 948.6 g)分别是单施P处理、CK和单施N处理的1.5倍、3.1倍和3.5倍.玉米整个生育期根系总提水量与收获期不同层次根系干重和体积存在极显著正相关关系,也与其地上部分生物量和籽粒产量呈极显著或显著正相关关系.可见,玉米根系的提水作用强弱因生育期和施肥处理而变化,施肥主要通过影响根系生长来调节其提水作用;在一定水分环境条件下,玉米根系提水作用能促进作物生长,提高其籽粒产量.
Resumo:
InGaAsP-InP square microlasers with a vertex output waveguide are fabricated by planar processes, and the etched sidewalls of the lasers are confined by insulating layer SiO2 and p-electrode TiAu metals. For a square microlaser with a side length of 30 mu m and a 2-mu m-wide output waveguide, a continuous-wave threshold current is 26 mA at room temperature and output power is 0.72 mW at 86 mA. The mode interval of 21 and 7.4 nm is observed for the microlasers with the side length of 10 and 30 mu m, respectively. Finite-difference time-domain (FDTD) simulations indicate that the lasing modes have incident angles of about 45 degrees at the boundaries of the resonator. In addition, square resonators surrounded by air, SiO2-Ti-Au, and SiO2-Au are compared by FDTD simulations.
Resumo:
AlGaInAs-InPmicrocylinder lasers connected with an output waveguide are fabricated by planar technology. Room-temperature continuous-wave operation with a threshold current of 8 mA is realized for a microcylinder laser with the radius of 10 mu m and the output waveguide width of 2 mu m. The mode Q-factor of 1.2 x 10(4) is measured from the laser spectrum at the threshold. Coupled mode characteristics are analyzed by 2-D finite-difference time-domain simulation and the analytical solution of whispering-gallery modes. The calculated mode Q-factors of coupled modes are in the same order as the measured value.
Resumo:
Square microcavity laser with an output waveguide is proposed and analyzed by the finite-difference time-domain (FDTD) technique. For a square resonator with refractive index of 3.2, side length of 4 microns, and output waveguide of 0.4-micron width, we have got the quality factors (Q factors) of 6.7×10~2 and 7.3×10~3 for the fundamental and first-order transverse magnetic (TM) mode near the wavelength of 1.5 microns, respectively. The simulated intensity distribution for the first-order TM mode shows that the coupling efficiency in the waveguide reaches 53%. The numerical simulation shows that the first-order transverse modes have fairly high Q factor and high coupling efficiency to the output waveguide. Therefore the square resonator with an output waveguide is a promising candidate to realize single-mode directional emission microcavity lasers.
Resumo:
The principle of step-scan Fourier transform infrared (FTIR) spectroscopy is introduced. Double modulation step-scan FTIR technique is used to obtain the quantum cascade laser's stacked emission spectra in the time domain. Optical property and thermal accumulation of devices due to large drive current are analyzed.
Resumo:
The band structure of 2D photonic crystals (PCs) and localized states resulting from defects are analyzed by finite-difference time-domain (FDTD) technique and Pade approximation. The effect of dielectric constant contrast and filling factor on photonic bandgap (PBG) for perfect PCs and localized states in PCs with point defects are investigated. The resonant frequencies and quality factors are calculated for PCs with different defects. The numerical results show that it is possible to modulate the location, width and number of PBGs and frequencies of the localized states only by changing the dielectric constant contrast and filling factor.
Resumo:
The semiconductor microlasers based on the equilateral triangle resonator (ETR) can be fabricated from the edge-emitting laser wafer by dry-etching technique, and the directional emission can be obtained by connecting an output waveguide to one of the vertices of the ETR. We investigate the mode characteristics, especially the mode quality factor, for the ETR with imperfect vertices, which is inevitable in the real technique process. The numerical simulations show that the confined modes can still have a high quality factor in the ETR with imperfect vertices. We can expect that the microlasers is a suitable light source for photonic integrated circuits.
Resumo:
The formations of the surface plasmonpolariton (SPP) bands in metal/air/metal (MAM) sub-wavelength plasmonic grating waveguide (PGW) are proposed. The band gaps originating from the highly localized resonances inside the grooves can be simply estimated from the round trip phase condition. Due to the overlap of the localized SPPs between the neighboring grooves, a Bloch mode forms in the bandgap and can be engineered to build a very flat dispersion for slow light. A chirped PGW with groove depth varying is also demonstrated to trap light, which is validated by finite-difference time-domain (FDTD) simulations with both continuous and pulse excitations.