941 resultados para Three-dimensional flow


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The growth history of two populations of snowball garnet from the Lukmanier Pass area (central Swiss Alps) was examined through a detailed analysis of three-dimensional geometry, chemical zoning and crystallographic orientation. The first population, collected in the hinge of a chevron-type fold, shows an apparent rotation of 360 degrees. The first 270 degrees are characterized by spiral-shaped inclusion trails, gradual and concentric Mn zoning and a single crystallographic orientation, whereas in the last 90 degrees, crenulated inclusion trails and secondary Mn maxima centred on distinct crystallographic garnet domains are observed. Microstructural, geochemical and textural data indicate a radical change in growth regime between the two growth sequences. In the first 270 degrees, growth occurred under rotational non-coaxial flow, whereas in the last 90 degrees, garnet grew under a non-rotational shortening regime. The second population, collected in the limb of the same chevron-type fold structure, is characterized by a spiral geometry that does not exceed 270 degrees of apparent rotation. These garnet microstructures do not record any evidence for a modification of the stress field during garnet growth. Concentric Mn zoning as well as a single crystallographic orientation are observed for the entire spiral. Electron backscatter diffraction data indicate that nearly all central domains in the snowball garnet are characterized by one [001] axis oriented (sub-)parallel to the symmetry axis and by another [001] axis oriented (sub-)parallel to the orientation of the internal foliation. These features suggest that the crystallographic orientation across the garnet spiral is not random and that a relation exists among the symmetry axis, the internal foliation and the crystallographic orientation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Three-dimensional models of organ biogenesis have recently flourished. They promote a balance between stem/progenitor cell expansion and differentiation without the constraints of flat tissue culture vessels, allowing for autonomous self-organization of cells. Such models allow the formation of miniature organs in a dish and are emerging for the pancreas, starting from embryonic progenitors and adult cells. This review focuses on the currently available systems and how these allow new types of questions to be addressed. We discuss the expected advancements including their potential to study human pancreas development and function as well as to develop diabetes models and therapeutic cells.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We propose a method for brain atlas deformation in the presence of large space-occupying tumors, based on an a priori model of lesion growth that assumes radial expansion of the lesion from its starting point. Our approach involves three steps. First, an affine registration brings the atlas and the patient into global correspondence. Then, the seeding of a synthetic tumor into the brain atlas provides a template for the lesion. The last step is the deformation of the seeded atlas, combining a method derived from optical flow principles and a model of lesion growth. Results show that a good registration is performed and that the method can be applied to automatic segmentation of structures and substructures in brains with gross deformation, with important medical applications in neurosurgery, radiosurgery, and radiotherapy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cell motility is an essential process that depends on a coherent, cross-linked actin cytoskeleton that physically coordinates the actions of numerous structural and signaling molecules. The actin cross-linking protein, filamin (Fln), has been implicated in the support of three-dimensional cortical actin networks capable of both maintaining cellular integrity and withstanding large forces. Although numerous studies have examined cells lacking one of the multiple Fln isoforms, compensatory mechanisms can mask novel phenotypes only observable by further Fln depletion. Indeed, shRNA-mediated knockdown of FlnA in FlnB¿/¿ mouse embryonic fibroblasts (MEFs) causes a novel endoplasmic spreading deficiency as detected by endoplasmic reticulum markers. Microtubule (MT) extension rates are also decreased but not by peripheral actin flow, because this is also decreased in the Fln-depleted system. Additionally, Fln-depleted MEFs exhibit decreased adhesion stability that appears in increased ruffling of the cell edge, reduced adhesion size, transient traction forces, and decreased stress fibers. FlnA¿/¿ MEFs, but not FlnB¿/¿ MEFs, also show a moderate defect in endoplasm spreading, characterized by initial extension followed by abrupt retractions and stress fiber fracture. FlnA localizes to actin linkages surrounding the endoplasm, adhesions, and stress fibers. Thus we suggest that Flns have a major role in the maintenance of actin-based mechanical linkages that enable endoplasmic spreading and MT extension as well as sustained traction forces and mature focal adhesions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Epitaxial and fully strained SrRuO3 thin films have been grown on SrTiO3(100). At initial stages the growth mode is three-dimensional- (3D-)like, leading to a finger-shaped structure aligned with the substrate steps and that eventually evolves into a 2D step-flow growth. We study the impact that the defect structure associated with this unique growth mode transition has on the electronic properties of the films. Detailed analysis of the transport properties of nanometric films reveals that microstructural disorder promotes a shortening of the carrier mean free path. Remarkably enough, at low temperatures, this results in a reinforcement of quantum corrections to the conductivity as predicted by recent models of disordered, strongly correlated electronic systems. This finding may provide a simple explanation for the commonly observed¿in conducting oxides-resistivity minima at low temperature. Simultaneously, the ferromagnetic transition occurring at about 140 K, becomes broader as film thickness decreases down to nanometric range. The relevance of these results for the understanding of the electronic properties of disordered electronic systems and for the technological applications of SrRuO3¿and other ferromagnetic and metallic oxides¿is stressed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In three-dimensional (3D) coronary magnetic resonance angiography (MRA), the in-flow contrast between the coronary blood and the surrounding myocardium is attenuated as compared to thin-slab two-dimensional (2D) techniques. The application of a gadolinium (Gd)-based intravascular contrast agent may provide an additional source of signal and contrast by reducing T(1blood) and supporting the visualization of more distal or branching segments of the coronary arterial tree. In six healthy adults, the left coronary artery (LCA) system was imaged pre- and postcontrast with a 0.075-mmol/kg bodyweight dose of the intravascular contrast agent B-22956. For imaging, an optimized free-breathing, navigator-gated and -corrected 3D inversion recovery (IR) sequence was used. For comparison, state-of-the-art baseline 3D coronary MRA with T(2) preparation for non-exogenous contrast enhancement was acquired. The combination of IR 3D coronary MRA, sophisticated navigator technology, and B-22956 allowed for an extensive visualization of the LCA system. Postcontrast, a significant increase in both the signal-to-noise ratio (SNR; 46%, P < 0.05) and contrast-to-noise ratio (CNR; 160%, P < 0.01) was observed, while vessel sharpness of the left anterior descending (LAD) artery and the left coronary circumflex (LCX) were improved by 20% (P < 0.05) and 18% (P < 0.05), respectively.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The 2011 Missouri River flooding caused significant damage to many geo-infrastructure systems including levees, bridge abutments/foundations, paved and unpaved roadways, culverts, and embankment slopes in western Iowa. The flooding resulted in closures of several interchanges along Interstate 29 and of more than 100 miles of secondary roads in western Iowa, causing severe inconvenience to residents and losses to local businesses. The main goals of this research project were to assist county and city engineers by deploying and using advanced technologies to rapidly assess the damage to geo-infrastructure and develop effective repair and mitigation strategies and solutions for use during future flood events in Iowa. The research team visited selected sites in western Iowa to conduct field reconnaissance, in situ testing on bridge abutment backfills that were affected by floods, flooded and non-flooded secondary roadways, and culverts. In situ testing was conducted shortly after the flood waters receded, and several months after flooding to evaluate recovery and performance. Tests included falling weight deflectometer, dynamic cone penetrometer, three-dimensional (3D) laser scanning, ground penetrating radar, and hand auger soil sampling. Field results indicated significant differences in roadway support characteristics between flooded and non-flooded areas. Support characteristics in some flooded areas recovered over time, while others did not. Voids were detected in culvert and bridge abutment backfill materials shortly after flooding and several months after flooding. A catalog of field assessment techniques and 20 potential repair/mitigation solutions are provided in this report. A flow chart relating the damages observed, assessment techniques, and potential repair/mitigation solutions is provided. These options are discussed for paved/unpaved roads, culverts, and bridge abutments, and are applicable for both primary and secondary roadways.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: The aim of our study was the investigation of a novel navigator-gated three-dimensional (3D) steady-state free-precession (SSFP) sequence for free-breathing renal magnetic resonance angiography (MRA) without contrast medium, and to examine the advantage of an additional inversion prepulse for improved contrast. METHODS: Eight healthy volunteers (mean age 29 years) and eight patients (mean age 53 years) were investigated on a 1.5 Tesla MR system (ACS-NT, Philips, Best, The Netherlands). Renal MRA was performed using three navigator-gated free-breathing cardiac-triggered 3D SSFP sequences [repetition time (TR) = 4.4 ms, echo time (TE) = 2.2 ms, flip angle 85 degrees, spatial resolution 1.25 x 1.25 x 4.0 mm(3), scanning time approximately 1 minute 30 seconds]. The same sequence was performed without magnetization preparation, with a non-slab selective and a slab-selective inversion prepulse. Signal-to-noise ratio (SNR), contrast-to-noise (CNR) vessel length, and subjective image quality were compared. RESULTS: Three-dimensional SSFP imaging combined with a slab-selective inversion prepulse enabled selective and high contrast visualization of the renal arteries, including the more distal branches. Standard SSFP imaging without magnetization preparation demonstrated overlay by veins and renal parenchyma. A non-slab-selective prepulse abolished vessel visualization. CNR in SSFP with slab-selective inversion was 43.6 versus 10.6 (SSFP without magnetization preparation) and 0.4 (SSFP with non-slab-selective inversion), P < 0.008. CONCLUSION: Navigator-gated free-breathing cardiac-triggered 3D SSFP imaging combined with a slab-selective inversion prepulse is a novel, fast renal MRA technique without the need for contrast media.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Depth-averaged velocities and unit discharges within a 30 km reach of one of the world's largest rivers, the Rio Parana, Argentina, were simulated using three hydrodynamic models with different process representations: a reduced complexity (RC) model that neglects most of the physics governing fluid flow, a two-dimensional model based on the shallow water equations, and a three-dimensional model based on the Reynolds-averaged Navier-Stokes equations. Row characteristics simulated using all three models were compared with data obtained by acoustic Doppler current profiler surveys at four cross sections within the study reach. This analysis demonstrates that, surprisingly, the performance of the RC model is generally equal to, and in some instances better than, that of the physics based models in terms of the statistical agreement between simulated and measured flow properties. In addition, in contrast to previous applications of RC models, the present study demonstrates that the RC model can successfully predict measured flow velocities. The strong performance of the RC model reflects, in part, the simplicity of the depth-averaged mean flow patterns within the study reach and the dominant role of channel-scale topographic features in controlling the flow dynamics. Moreover, the very low water surface slopes that typify large sand-bed rivers enable flow depths to be estimated reliably in the RC model using a simple fixed-lid planar water surface approximation. This approach overcomes a major problem encountered in the application of RC models in environments characterised by shallow flows and steep bed gradients. The RC model is four orders of magnitude faster than the physics based models when performing steady-state hydrodynamic calculations. However, the iterative nature of the RC model calculations implies a reduction in computational efficiency relative to some other RC models. A further implication of this is that, if used to simulate channel morphodynamics, the present RC model may offer only a marginal advantage in terms of computational efficiency over approaches based on the shallow water equations. These observations illustrate the trade off between model realism and efficiency that is a key consideration in RC modelling. Moreover, this outcome highlights a need to rethink the use of RC morphodynamic models in fluvial geomorphology and to move away from existing grid-based approaches, such as the popular cellular automata (CA) models, that remain essentially reductionist in nature. In the case of the world's largest sand-bed rivers, this might be achieved by implementing the RC model outlined here as one element within a hierarchical modelling framework that would enable computationally efficient simulation of the morphodynamics of large rivers over millennial time scales. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aim of this study was to prospectively evaluate the accuracy and predictability of new three-dimensionally preformed AO titanium mesh plates for posttraumatic orbital wall reconstruction.We analyzed the preoperative and postoperative clinical and radiologic data of 10 patients with isolated blow-out orbital fractures. Fracture locations were as follows: floor (N = 7; 70%), medial wall (N = 1; 1%), and floor/medial wall (N = 2; 2%). The floor fractures were exposed by a standard transconjunctival approach, whereas a combined transcaruncular transconjunctival approach was used in patients with medial wall fractures. A three-dimensional preformed AO titanium mesh plate (0.4 mm in thickness) was selected according to the size of the defect previously measured on the preoperative computed tomographic (CT) scan examination and fixed at the inferior orbital rim with 1 or 2 screws. The accuracy of plate positioning of the reconstructed orbit was assessed on the postoperative CT scan. Coronal CT scan slices were used to measure bony orbital volume using OsiriX Medical Image software. Reconstructed versus uninjured orbital volume were statistically correlated.Nine patients (90%) had a successful treatment outcome without complications. One patient (10%) developed a mechanical limitation of upward gaze with a resulting handicapping diplopia requiring hardware removal. Postoperative orbital CT scan showed an anatomic three-dimensional placement of the orbital mesh plates in all of the patients. Volume data of the reconstructed orbit fitted that of the contralateral uninjured orbit with accuracy to within 2.5 cm(3). There was no significant difference in volume between the reconstructed and uninjured orbits.This preliminary study has demonstrated that three-dimensionally preformed AO titanium mesh plates for posttraumatic orbital wall reconstruction results in (1) a high rate of success with an acceptable rate of major clinical complications (10%) and (2) an anatomic restoration of the bony orbital contour and volume that closely approximates that of the contralateral uninjured orbit.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Surface geological mapping, laboratory measurements of rock properties, and seismic reflection data are integrated through three-dimensional seismic modeling to determine the likely cause of upper crustal reflections and to elucidate the deep structure of the Penninic Alps in eastern Switzerland. Results indicate that the principal upper crustal reflections recorded on the south end of Swiss seismic line NFP20-EAST can be explained by the subsurface geometry of stacked basement nappes. In addition, modeling results provide improvements to structural maps based solely on surface trends and suggest the presence of previously unrecognized rock units in the subsurface. Construction of the initial model is based upon extrapolation of plunging surface. structures; velocities and densities are established by laboratory measurements of corresponding rock units. Iterative modification produces a best fit model that refines the definition of the subsurface geometry of major structures. We conclude that most reflections from the upper 20 km can be ascribed to the presence of sedimentary cover rocks (especially carbonates) and ophiolites juxtaposed against crystalline basement nappes. Thus, in this area, reflections appear to be principally due to first-order lithologic contrasts. This study also demonstrates not only the importance of three-dimensional effects (sideswipe) in interpreting seismic data, but also that these effects can be considered quantitatively through three-dimensional modeling.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The main objective of the proposed study is to use Computational Fluid Dynamics (CFD) tools to determine the wind loads by accurate numerical simulations of air flow characteristics around large highway sign structures under severe wind speeds conditions. Fully three-dimensional Reynolds- Averaged Navier-Stokes (RANS) simulations are used to estimate the total force on different panels, as well as the actual pressure distribution on the front and back faces of the panels. In particular, the present study investigates the effects of aspect ratio and sign spacing for regular panels, the effect of sign depth for the dynamic message signs that are now being used on Iowa highways, the effect induced by the presence of back-to-back signs, the effect of the presence of add-on exit signs, and the effect of the presence of trucks underneath the signs potentially creating “wind tunnel” effect.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cell motility is an essential process that depends on a coherent, cross-linked actin cytoskeleton that physically coordinates the actions of numerous structural and signaling molecules. The actin cross-linking protein, filamin (Fln), has been implicated in the support of three-dimensional cortical actin networks capable of both maintaining cellular integrity and withstanding large forces. Although numerous studies have examined cells lacking one of the multiple Fln isoforms, compensatory mechanisms can mask novel phenotypes only observable by further Fln depletion. Indeed, shRNA-mediated knockdown of FlnA in FlnB¿/¿ mouse embryonic fibroblasts (MEFs) causes a novel endoplasmic spreading deficiency as detected by endoplasmic reticulum markers. Microtubule (MT) extension rates are also decreased but not by peripheral actin flow, because this is also decreased in the Fln-depleted system. Additionally, Fln-depleted MEFs exhibit decreased adhesion stability that appears in increased ruffling of the cell edge, reduced adhesion size, transient traction forces, and decreased stress fibers. FlnA¿/¿ MEFs, but not FlnB¿/¿ MEFs, also show a moderate defect in endoplasm spreading, characterized by initial extension followed by abrupt retractions and stress fiber fracture. FlnA localizes to actin linkages surrounding the endoplasm, adhesions, and stress fibers. Thus we suggest that Flns have a major role in the maintenance of actin-based mechanical linkages that enable endoplasmic spreading and MT extension as well as sustained traction forces and mature focal adhesions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

PURPOSE: To implement a double-inversion bright-blood coronary MR angiography sequence using a cylindrical re-inversion prepulse for selective visualization of the coronary arteries. MATERIALS AND METHODS: Local re-inversion bright-blood magnetization preparation was implemented using a nonselective inversion followed by a cylindrical aortic re-inversion prepulse. After an inversion delay that allows for in-flow of the labeled blood-pool into the coronary arteries, three-dimensional radial steady-state free-precession (SSFP) imaging (repetition/echo time, 7.2/3.6 ms; flip angle, 120 degrees, 16 profiles per RR interval; field of view, 360 mm; matrix, 512, twelve 3-mm slices) is performed. Coronary MR angiography was performed in three healthy volunteers and in one patient on a commercial 1.5 Tesla whole-body MR System. RESULTS: In all subjects, coronary arteries were selectively visualized with positive contrast. In addition, a middle-grade stenosis of the proximal right coronary artery was seen in one patient. CONCLUSION: A novel T1 contrast-enhancement strategy is presented for selective visualization of the coronary arteries without extrinsic contrast medium application. In comparison to former arterial spin-labeling schemes, the proposed magnetization preparation obviates the need for a second data set and subtraction.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Vagueness and high dimensional space data are usual features of current data. The paper is an approach to identify conceptual structures among fuzzy three dimensional data sets in order to get conceptual hierarchy. We propose a fuzzy extension of the Galois connections that allows to demonstrate an isomorphism theorem between fuzzy sets closures which is the basis for generating lattices ordered-sets