1000 resultados para Three Oaks (Mich.)
Resumo:
A set of hypersingular integral equations of a three-dimensional finite elastic solid with an embedded planar crack subjected to arbitrary loads is derived. Then a new numerical method for these equations is proposed by using the boundary element method combined with the finite-part integral method. According to the analytical theory of the hypersingular integral equations of planar crack problems, the square root models of the displacement discontinuities in elements near the crack front are applied, and thus the stress intensity factors can be directly calculated from these. Finally, the stress intensity factor solutions to several typical planar crack problems in a finite body are evaluated.
Resumo:
A new compact finite difference-Fourier spectral hybrid method for solving the three dimensional incompressible Navier-Stokes equations is developed in the present paper. The fifth-order upwind compact finite difference schemes for the nonlinear convection terms in the physical space, and the sixth-order center compact schemes for the derivatives in spectral space are described, respectively. The fourth-order compact schemes in a single nine-point cell for solving the Helmholtz equations satisfied by the velocities and pressure in spectral space is derived and its preconditioned conjugate gradient iteration method is studied. The treatment of pressure boundary conditions and the three dimensional non-reflecting outflow boundary conditions are presented. Application to the vortex dislocation evolution in a three dimensional wake is also reported.
Resumo:
Experimental stress-strain data of OFHC copper first under torsion to 13% and then under torsion-tension to about 10% are used to study the characteristics of three elastic-plastic constitutive models: Chaboche's super-positional nonlinear model, Dafalias and Popov's two surface model and Watanabe and Atluri's version of the endochronic model. The three models, originally oriented for infinitesimal deformation, have been extended for finite deformation. The results show (a) the Mises-type yield surface used in the three models brings about significant departure of the predictions from the experimental data; (b) Chaboche's and Dafalias' models are easier than Watanabe and Atluri's model in determining the material parameters in them, and (c) Chaboche's and Watanabe & Atluri's models produce almost the same prediction to the data, while Dafalias' model cannot accurately predict the plastic deformations when a loading path changes in its direction. Copyright (C) 1996 Elsevier Science Ltd
Resumo:
A three-dimensional finite element analysis has been used to determine the internal stresses in a three-phase composite. The stresses have been determined for a variety of interphase properties, the thicknesses of the interphase and the volume fractions of particles. Young's modulus has been calculated from a knowledge of these stresses and the applied deformation. The calculations show that stress distributions in the matrix and the mechanical properties are sensitive to the interphase property in the three-phase composites. The interfacial stresses in the three-dimensional analysis are in agreement with results obtained by an axisymmetric analysis. The predicted bulk modulus in three-dimensional analysis agrees well with the theoretical solution obtained by Qui and Weng, but it presents a great divergence from that in axisymmetric analyses. An investigation indicates that this divergence may be caused by the difference in the unit cell structure between two models. A comparison of the numerically predicted bulk and shear modulus for two-phase composites with the theoretical results indicates that the three-dimensional analysis gives quite satisfactory results.
Resumo:
The dynamic stress intensity factor history for a semi-infinite crack in an otherwise unbounded elastic body is analyzed. The crack is subjected to a pair of suddenly-applied point loadings on its faces at a distance L away from the crack tip. The exact expression for the mode I stress intensity factor as a function of time is obtained. The method of solution is based on the direct application of integral transforms, the Wiener-Hopf technique and the Cagniard-de Hoop method. Due to the existence of the characteristic length in loading this problem was long believed a knotty problem. Some features of the solutions are discussed and graphical result for numerical computation is presented.
Resumo:
The creep and relaxation behaviour of laminated glass fibre reinforced plastics (GRP) in three-point bending were studied both experimentally and analytically. Creep and relaxation experiments were carried out on eight types of specimens, consisting of glass fibre fabric reinforced epoxy beams. While the bending deflexion and creep strains were measured in the creep tests, the load and relaxation strain were recorded in the relaxation tests. Marked creep effects were seen in the tests, where the environment temperature was 50°C and the period of the measurement was 60 min. An attempt to predict the creep deflexion and relaxation behaviour was made. The transverse shear effect on creep deflexion was taken into account. The predicted results were compared with experimental ones. They were found to be in reasonable agreement, but the linearization assumption, upon which the relaxation behaviour analysis was based, appears to lead to larger inaccuracies in the results.
Resumo:
In a previous paper relating to a singular new fern (Polypodium podocarpum) from Panama, I have described very briefly the mountian (sp) region above David in the province of Chiriqui, and have referred in particular to a most interesting collecting trip of three days which I took from El Boquete over "Holcomb's trail" along the Rio Caldera to "Camp I" and to the summit of the Continental Divide a few miles farther on...(Document contains 9 pages)