931 resultados para Thermodynamic and Chemical Phenomena.
Resumo:
Aims: The study evaluated the influence of light curing units and immersionmedia on superficial morphology and chemistry of the nanofilled composite resin Supreme XT (3M)through the EDX analysis and SEM evaluation. Light curing units with different power densitiesand mode of application used were XL 3000 (480 mW/cm2), Jet Lite 4000 Plus (1230mW/cm2), andUltralume Led 5 (790 mW/cm2) and immersion media were artificial saliva, Coke1, tea and coffee,totaling 12 experimental groups. Specimens (10 mm 3 2 mm) were immersed in each respectivesolution for 5 min, three times a day, during 60 days and stored in artificial saliva at 378C 6 18Cbetween immersion periods. Topography and chemical analysis was qualitative. Findings: Groupsimmersed in artificial saliva, showed homogeneous degradation of matrix and deposition of calciumat the material surface. Regarding coffee, there was a reasonable chemical degradation with loss ofload particles and deposition of ions. For tea, superficial degradation occurred in specific areaswith deposition of calcium, carbon, potassium and phosphorus. For Coke1, excessive matrix degra-dation and loss of load particles with deposition of calcium, sodium, and potassium. Conclusion:Light curing units did not influence the superficial morphology of composite resin tested, but theimmersion beverages did. Coke1affected material’s surface more than did the other tested drinks.Microsc. Res. Tech. 73:176–181, 2010.
Resumo:
The purpose of this study was to characterize and to evaluate the bioactivity potential of experimental root canal sealers (ES) based on Portland cement, epoxy resin with nano- and micro-particles of niobium or zirconium oxide used as radiopacifiers in comparison to AH Plus and MTA Fillapex. Methods Specimens of the sealers (10 mm in diameter × 1 mm thick) were prepared and the radiopacity was evaluated according to ISO 6876 (2012) specifications. Characterization of the sealers was performed under the scanning electron microscope (SEM) immediately after setting and after immersion for 28 days in Hank's balanced salt solution (HBSS). In addition X-ray energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy were also performed. The pH and calcium ion release were measured after 1, 7, 14, 21 and 28 days after completion of seating using a digital pH meter and an atomic absorption spectrophotometer, respectively. Results The experimental sealers exhibited an average radiopacity of 2.5 mm thickness of aluminum, which was similar to MTA Fillapex (P > 0.05) and inferior to AH Plus (P < 0.05). AH Plus did not show bioactivity. Although the experimental sealers did not exhibit the formation of hydration product, they encouraged the deposition of crystalline spherical structures of calcium deficient phosphate. The highest pH and calcium release values were observed with the experimental sealers (P < 0.01). ES-Nb-micro was the only sealer to present hexagonal shaped crystal deposition. Significance Novel root canal sealers based on a mixture of Portland cement, epoxy resin and radiopacifier exhibited a degree of bioactivity although no evidence of cement hydration was demonstrated on material characterization. The radiopacifier particle size had limited effect on the sealer microstructure and chemical properties.
Resumo:
Minas frescal cheese is a semi-skimmed product with high moisture and simple preparation and one of the most consumed in Brazil. Thus, the aim of this study was to combine the characteristics of inulin and gum acacia (by having fibers and being prebiotic) to produce a minas frescal cheese. Were evaluate the characteristics physical and chemical, microbial and sensory acceptance (hedonic scale) of each cheese. Three cheeses were prepared; one as a standard (QP) without inulin, and others with 0.49% (QI25) and 0.98% (QI50) inulin, the amount of gum acacia was maintained. The yield of the formulations with gum acacia and inulin were 9.76% for (QI25) and to 20.03% (QI50) higher than the standard sample. In relation to moisture content, samples containing inulin and gum acacia showed values greater than the standard sample. The sensory analysis indicated no differences between scores for color, aroma and texture, but significant differences were detected for flavor, in which (QI25) received the highest acceptance. Regarding the energy value, it was obtained 276 kcal (QP), 215 kcal (QI25) and 190 kcal (QI50). Therefore, the developed product presents satisfactory results for sensory, microbiological and physical- chemical analyses.
Resumo:
Orthodontic mini-implants are used in clinical practice to provide efficient and aesthetically-pleasing anchorage. AIM: To evaluate the hardness Vickers hardness and chemical composition of mini-implant titanium alloys from five commercial brands. METHODS: Thirty self-drilling mini-implants, six each from the following commercial brands, were used: Neodent NEO, Morelli MOR, Sin SIN, Conexão CON, and Rocky Mountain RMO. The hardness and chemical composition of the titanium alloys were performed by the Vickers hardness test and energy dispersive X-ray spectroscopy, respectively. RESULTS: Vickers hardness was significantly higher in SIN implants than in NEO, MOR, and CON implants. Similarly, VH was significantly higher in RMO implants than in MOR and NEO ones. In addition, VH was higher in CON implants than in NEO ones. There were no significant differences in the proportions of titanium and aluminum in the mini-implant alloy of the five commercial brands. Conversely, the proportion of vanadium differed significantly between CON and MOR/NEO implants. CONCLUSIONS: Mini-implants of different brands presented distinct properties of hardness and composition of the alloy.
Resumo:
Mixture modeling methodology was used to investigate interactions of sugar, oligofructose and inulin in papaya nectars as related to sensory liking and chemical characteristics. Mixing sugar and inulin and increasing the sugar proportion raised the liking of flavor and sweetness and the overall acceptability of papaya nectars. Addition of the three components, along with raising the sugar proportion, increased the ash and soluble solids content in papaya nectars. The internal preference mappings showed that all nectars with oligofructose and inulin were as well liked as nectar containing sugar alone, except for some formulations with lower quantities of sugar. Formulations with 6 g/100 g sugar and 6 g/100 g inulin, or with 8 g/100 g sugar, 2 g/100 g inulin and 2 g/100 g oligofructose, can be considered to be the best formulations to produce, with regard to sensory liking and adequacy of chemical parameters, besides all papaya nectars with addition of oligofructose and inulin can potentially be claimed as prebiotic. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
There is a large demand for organic fertilizers in organic agriculture, but few options for different wastes have been studied. The aim of the present work was to evaluate the biological responses of earthworms Eisenia andrei Bouche in wastes composed of cattle manure, peanut husk and spent coffee grounds, as well as to analyze the effect of earthworms on the microbial density and chemical properties of the vermicompost. Four treatments were employed, H1: cattle manure (100%), H2: cattle manure (75%) + peanut husk (25%), H3: cattle manure (75%) + spent coffee grounds (25%), H4: cattle manure (50%) + spent coffee ground (25%) + peanut husk (25%), with six replicates in a completely randomized design. The addition of spent coffee grounds to the manure increased the total biomass and indicated a rising trend in the production of cocoons, while the peanut husk apparently did not affect these variables. The CFU of bacteria and fungi were affected by the treatments at the beginning and end of the experiment and by the earthworms during the waste transformation. The evaluated organic waste mixtures differently affected the growth and reproduction of earthworms and chemical and biological properties of humus.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This study evaluated the influence of finishing and polishing procedures and different fluoride solutions on superficial morphology and chemistry of the nanofilled composite resin Supreme XT (3M) through the EDX analysis and SEM evaluation. Circular specimens (n = 30) of 10 mm diameter and 2 mm thickness were prepared, with half of the sample assays finished and polished with Super-Snap (R) sandpaper. The experimental groups were divided according to the presence or absence of finishing and polishing and solutions (artificial saliva, 0.05% of manipulated sodium fluoride solution, Fluordent Reach, Oral B, Fluorgard). Specimens were immersed in each respective solution for 1 min per day, during 60 days and stored in artificial saliva at 37 +/- 1 degrees C between immersion periods. Topography and chemical analysis was qualitative. It was observed that specimens submitted to finishing and polishing procedures had lower superficial degradation. Fluoride solutions promoted superficial alterations on specimens, being the highest degradation obtained with Fluordent Reach. It can be concluded that finishing and polishing procedures and the immersion media influence the superficial morphology of composite resin tested; the Fluordent Reach was the fluoride solution that most affected the material's surface. Microsc. Res. Tech. 2011., (c) 2011 Wiley Periodicals, Inc.
Resumo:
Araucaria angustifolia, commonly named Araucaria, is a Brazilian native species that is intensively exploited due to its timber quality. Therefore, Araucaria is on the list of species threatened by extinction. Despite the importance of soil for forest production, little is known about the soil properties of the highly fragmented Araucaria forests. This study was designed to investigate the use of chemical and biological properties as indicators of conservation and anthropogenic disturbance of Araucaria forests in different sampling periods. The research was carried out in two State parks of Sao Paulo: Parque Estadual Turistico do Alto do Ribeira and Parque Estadual de Campos de Jordao. The biochemical properties carbon and nitrogen in microbial biomass (MB-C and MB-N), basal respiration (BR), the metabolic quotient (qCO(2)) and the following enzyme activities: beta-glucosidase, urease, and fluorescein diacetate hydrolysis (FDA) were evaluated. The sampling period (dry or rainy season) influenced the results of mainly MB-C, MB-N, BR, and qCO(2). The chemical and biochemical properties, except K content, were sensitive indicators of differences in the conservation and anthropogenic disturbance stages of Araucaria forests. Although these forests differ in biochemical and chemical properties, they are efficient in energy use and conservation, which is shown by their low qCO(2), suggesting an advanced stage of succession.
Resumo:
Background: Sugarcane cultivation plays an important role in Brazilian economy, and it is expanding fast, mainly due to the increasing demand for ethanol production. In order to understand the impact of sugarcane cultivation and management, we studied sugarcane under different management regimes (pre-harvest burn and mechanical, unburnt harvest, or green cane), next to a control treatment with native vegetation. The soil bacterial community structure (including an evaluation of the diversity of the ammonia oxidizing (amoA) and denitrifying (nirK) genes), greenhouse gas flow and several soil physicochemical properties were evaluated. Results: Our results indicate that sugarcane cultivation in this region resulted in changes in several soil properties. Moreover, such changes are reflected in the soil microbiota. No significant influence of soil management on greenhouse gas fluxes was found. However, we did find a relationship between the biological changes and the dynamics of soil nutrients. In particular, the burnt cane and green cane treatments had distinct modifications. There were significant differences in the structure of the total bacterial, the ammonia oxidizing and the denitrifying bacterial communities, being that these groups responded differently to the changes in the soil. A combination of physical and chemical factors was correlated to the changes in the structures of the total bacterial communities of the soil. The changes in the structures of the functional groups follow a different pattern than the physicochemical variables. The latter might indicate a strong influence of interactions among different bacterial groups in the N cycle, emphasizing the importance of biological factors in the structuring of these communities. Conclusion: Sugarcane land use significantly impacted the structure of total selected soil bacterial communities and ammonia oxidizing and denitrifier gene diversities in a Cerrado field site in Central Brazil. A high impact of land use was observed in soil under the common burnt cane management. The green cane soil also presented different profiles compared to the control soil, but to at a lesser degree.
Resumo:
An extensive investigation of strontium titanate, SrTiO3 (STO), nanospheres synthesized via a microwave-assisted hydrothermal (MAH) method has been conducted to gain a better insight into thermodynamic, kinetic, and reaction phenomena involved in STO nucleation and crystal growth processes. To this end, quantum chemical modeling based on the density functional theory and periodic super cell models were done. Several experimental techniques were employed to get a deep characterization of structural and optical features of STO nanospheres. A possible formation mechanism was proposed, based on dehydration of titanium and strontium clusters followed by mesoscale transformation and a self-assembly process along an oriented attachment mechanism resulting in spherical like shape. Raman and XANES analysis renders a noncentrosymmetric environment for the octahedral titanium, while infrared and first order Raman modes reveal OH groups which are unsystematically incorporated into uncoordinated superficial sites. These results seem to indicate that the key component is the presence of distorted TiO6 clusters to engender a luminescence property. Analysis of band structure, density Of states, and charge map shows that there is a close relationship among local broken symmetry, polarization, and energy split of the 3d orbitals of titanium. The interplay among these electronic and structural features provides necessary conditions to evaluate its luminescent properties under two energy excitation.
Resumo:
Context. Recent studies have confirmed the long standing suspicion that M 22 shares a metallicity spread and complex chemical enrichment history similar to that observed in omega Cen. M 22 is among the most massive Galactic globular clusters and its color-magnitude diagram and chemical abundances reveal the existence of sub-populations. Aims. To further constrain the chemical diversity of M 22, necessary to interpret its nucleosynthetic history, we seek to measure relative abundance ratios of key elements (carbon, nitrogen, oxygen, and fluorine) best studied, or only available, using high-resolution spectra at infrared wavelengths. Methods. High-resolution (R = 50 000) and high S/N infrared spectra were acquired of nine red giant stars with Phoenix at the Gemini-South telescope. Chemical abundances were calculated through a standard 1D local thermodynamic equilibrium analysis using Kurucz model atmospheres. Results. We derive [Fe/H] = -1.87 to -1.44, confirming at infrared wavelengths that M 22 does present a [Fe/H] spread. We also find large C and N abundance spreads, which confirm previous results in the literature but based on a smaller sample. Our results show a spread in A(C+N+O) of similar to 0.7 dex. Similar to mono-metallic globular clusters, M 22 presents a strong [Na/Fe]-[O/Fe] anticorrelation as derived from Na and CO lines in the K band. For the first time we recover F abundances in M 22 and find that it exhibits a 0.6 dex variation. We find tentative evidence for a flatter A(F)-A(O) relation compared to higher metallicity globular clusters. Conclusions. Our study confirms and expands upon the chemical diversity seen in this complex stellar system. All elements studied to date show large abundance spreads which require contributions from both massive and low mass stars.
Resumo:
Abstract Background In recent years, biorefining of lignocellulosic biomass to produce multi-products such as ethanol and other biomaterials has become a dynamic research area. Pretreatment technologies that fractionate sugarcane bagasse are essential for the successful use of this feedstock in ethanol production. In this paper, we investigate modifications in the morphology and chemical composition of sugarcane bagasse submitted to a two-step treatment, using diluted acid followed by a delignification process with increasing sodium hydroxide concentrations. Detailed chemical and morphological characterization of the samples after each pretreatment condition, studied by high performance liquid chromatography, solid-state nuclear magnetic resonance, diffuse reflectance Fourier transformed infrared spectroscopy and scanning electron microscopy, is reported, together with sample crystallinity and enzymatic digestibility. Results Chemical composition analysis performed on samples obtained after different pretreatment conditions showed that up to 96% and 85% of hemicellulose and lignin fractions, respectively, were removed by this two-step method when sodium hydroxide concentrations of 1% (m/v) or higher were used. The efficient lignin removal resulted in an enhanced hydrolysis yield reaching values around 100%. Considering the cellulose loss due to the pretreatment (maximum of 30%, depending on the process), the total cellulose conversion increases significantly from 22.0% (value for the untreated bagasse) to 72.4%. The delignification process, with consequent increase in the cellulose to lignin ratio, is also clearly observed by nuclear magnetic resonance and diffuse reflectance Fourier transformed infrared spectroscopy experiments. We also demonstrated that the morphological changes contributing to this remarkable improvement occur as a consequence of lignin removal from the sample. Bagasse unstructuring is favored by the loss of cohesion between neighboring cell walls, as well as by changes in the inner cell wall structure, such as damaging, hole formation and loss of mechanical resistance, facilitating liquid and enzyme access to crystalline cellulose. Conclusions The results presented herewith show the efficiency of the proposed method for improving the enzymatic digestibility of sugarcane bagasse and provide understanding of the pretreatment action mechanism. Combining the different techniques applied in this work warranted thorough information about the undergoing morphological and chemical changes and was an efficient approach to understand the morphological effects resulting from sample delignification and its influence on the enhanced hydrolysis results.
Resumo:
Araucaria angustifolia, commonly named Araucaria, is a Brazilian native species that is intensively exploited due to its timber quality. Therefore, Araucaria is on the list of species threatened by extinction. Despite the importance of soil for forest production, little is known about the soil properties of the highly fragmented Araucaria forests. This study was designed to investigate the use of chemical and biological properties as indicators of conservation and anthropogenic disturbance of Araucaria forests in different sampling periods. The research was carried out in two State parks of São Paulo: Parque Estadual Turístico do Alto do Ribeira and Parque Estadual de Campos de Jordão. The biochemical properties carbon and nitrogen in microbial biomass (MB-C and MB-N), basal respiration (BR), the metabolic quotient (qCO2) and the following enzyme activities: β-glucosidase, urease, and fluorescein diacetate hydrolysis (FDA) were evaluated. The sampling period (dry or rainy season) influenced the results of mainly MB-C, MB-N, BR, and qCO2. The chemical and biochemical properties, except K content, were sensitive indicators of differences in the conservation and anthropogenic disturbance stages of Araucaria forests. Although these forests differ in biochemical and chemical properties, they are efficient in energy use and conservation, which is shown by their low qCO2, suggesting an advanced stage of succession.