822 resultados para Theoretical models
Resumo:
An example of the evolution of the interacting behaviours of parents and progeny is studied using iterative equations linking the frequencies of the gametes produced by the progeny to the frequencies of the gametes in the parental generation. This population genetics approach shows that a model in which both behaviours are determined by a single locus can lead to a stable equilibrium in which the two behaviours continue to segregate. A model in which the behaviours are determined by genes at two separate loci leads eventually to fixation of the alleles at both loci but this can take many generations of selection. Models of the type described in this paper will be needed to understand the evolution of complex behaviour when genomic or experimental information is available about the genetic determinants of behaviour and the selective values of different genomes. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
The structures of trimethylchlorogermane ((CH3)(3)GeCl) and trimethylbromogermane ((CH3)(3)GeBr) have been determined by gas-phase electron diffraction (GED), augmented by the results from ab initio calculations employing second-order Moller-Plesset (MP2) level of theory and the 6-311+G(d) basis set. All the electrons were included in the correlation calculation. The results from the ab initio calculations indicated that these molecules have C-3v symmetry, and models with this symmetry were used in the electron diffraction analysis. The results for the principal distances (r(g)) and angles (angle(alpha)) from the combined GED/ab initio study of trimethylchlorogermane (with estimated 2sigma uncertainties) are: r(Ge-C) = 1.950(4) Angstrom, r(Ge-Cl) = 2.173(4) Angstrom, r(C-H) = 1.090(9) Angstrom, angleCGeC = 112.7(7)degrees, angleCGeCl = 106.0(8)degrees, angleGeCH = 107.8(12)degrees. The results for the principal distances (r(g)) and angles (angle(alpha)) from the combined GED/ab initio study of trimethylbromogermane (with estimated 2sigma uncertainties) are: r(Ge-C) = 1.952(7) Angstrom, r(Ge-Br) = 2.325(4) Angstrom, r(C-H) = 1. 140(28) Angstrom, angleCGeC = 114.2(11)degrees, angleCGeBr = 104.2(13)degrees, angleGeCH 106.9(43)degrees. Local C-3v symmetry and staggered conformation were assumed for the methyl groups.
Resumo:
The structures of 3-hydroxybenzoic acid and 4-hydroxybenzoic acid have been determined by gas-phase electron diffraction using results from quantum chemical calculations to inform the choice of restraints applied to some of the structural parameters. The results from the study presented here demonstrate that resonance hybrids are not as helpful in rationalizing the structures of 2-, 3-, and 4-hydroxybenzoic acids as are models based upon electrostatic effects.
Resumo:
It is argued that the truth status of emergent properties of complex adaptive systems models should be based on an epistemology of proof by constructive verification and therefore on the ontological axioms of a non-realist logical system such as constructivism or intuitionism. ‘Emergent’ properties of complex adaptive systems (CAS) models create particular epistemological and ontological challenges. These challenges bear directly on current debates in the philosophy of mathematics and in theoretical computer science. CAS research, with its emphasis on computer simulation, is heavily reliant on models which explore the entailments of Formal Axiomatic Systems (FAS). The incompleteness results of Gödel, the incomputability results of Turing, and the Algorithmic Information Theory results of Chaitin, undermine a realist (platonic) truth model of emergent properties. These same findings support the hegemony of epistemology over ontology and point to alternative truth models such as intuitionism, constructivism and quasi-empiricism.
Resumo:
The aim of this review paper is to present experimental methodologies and the mathematical approaches used to determine effective diffusivities of solutes in food materials. The paper commences by describing the diffusion phenomena related to solute mass transfer in foods and effective diffusivities. It then focuses on the mathematical formulation for the calculation of effective diffusivities considering different diffusion models based on Fick's second law of diffusion. Finally, experimental considerations for effective diffusivity determination are elucidated primarily based on the acquirement of a series of solute content versus time curves appropriate to the equation model chosen. Different factors contributing to the determination of the effective diffusivities such as the structure of food material, temperature, diffusion solvent, agitation, sampling, concentration and different techniques used are considered. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
The question "what Monte Carlo models can do and cannot do efficiently" is discussed for some functional spaces that define the regularity of the input data. Data classes important for practical computations are considered: classes of functions with bounded derivatives and Holder type conditions, as well as Korobov-like spaces. Theoretical performance analysis of some algorithms with unimprovable rate of convergence is given. Estimates of computational complexity of two classes of algorithms - deterministic and randomized for both problems - numerical multidimensional integration and calculation of linear functionals of the solution of a class of integral equations are presented. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
This paper seeks to illustrate the point that physical inconsistencies between thermodynamics and dynamics usually introduce nonconservative production/destruction terms in the local total energy balance equation in numerical ocean general circulation models (OGCMs). Such terms potentially give rise to undesirable forces and/or diabatic terms in the momentum and thermodynamic equations, respectively, which could explain some of the observed errors in simulated ocean currents and water masses. In this paper, a theoretical framework is developed to provide a practical method to determine such nonconservative terms, which is illustrated in the context of a relatively simple form of the hydrostatic Boussinesq primitive equation used in early versions of OGCMs, for which at least four main potential sources of energy nonconservation are identified; they arise from: (1) the “hanging” kinetic energy dissipation term; (2) assuming potential or conservative temperature to be a conservative quantity; (3) the interaction of the Boussinesq approximation with the parameterizations of turbulent mixing of temperature and salinity; (4) some adiabatic compressibility effects due to the Boussinesq approximation. In practice, OGCMs also possess spurious numerical energy sources and sinks, but they are not explicitly addressed here. Apart from (1), the identified nonconservative energy sources/sinks are not sign definite, allowing for possible widespread cancellation when integrated globally. Locally, however, these terms may be of the same order of magnitude as actual energy conversion terms thought to occur in the oceans. Although the actual impact of these nonconservative energy terms on the overall accuracy and physical realism of the oceans is difficult to ascertain, an important issue is whether they could impact on transient simulations, and on the transition toward different circulation regimes associated with a significant reorganization of the different energy reservoirs. Some possible solutions for improvement are examined. It is thus found that the term (2) can be substantially reduced by at least one order of magnitude by using conservative temperature instead of potential temperature. Using the anelastic approximation, however, which was initially thought as a possible way to greatly improve the accuracy of the energy budget, would only marginally reduce the term (4) with no impact on the terms (1), (2) and (3).
Resumo:
Current mathematical models in building research have been limited in most studies to linear dynamics systems. A literature review of past studies investigating chaos theory approaches in building simulation models suggests that as a basis chaos model is valid and can handle the increasingly complexity of building systems that have dynamic interactions among all the distributed and hierarchical systems on the one hand, and the environment and occupants on the other. The review also identifies the paucity of literature and the need for a suitable methodology of linking chaos theory to mathematical models in building design and management studies. This study is broadly divided into two parts and presented in two companion papers. Part (I) reviews the current state of the chaos theory models as a starting point for establishing theories that can be effectively applied to building simulation models. Part (II) develops conceptual frameworks that approach current model methodologies from the theoretical perspective provided by chaos theory, with a focus on the key concepts and their potential to help to better understand the nonlinear dynamic nature of built environment systems. Case studies are also presented which demonstrate the potential usefulness of chaos theory driven models in a wide variety of leading areas of building research. This study distills the fundamental properties and the most relevant characteristics of chaos theory essential to building simulation scientists, initiates a dialogue and builds bridges between scientists and engineers, and stimulates future research about a wide range of issues on building environmental systems.
Resumo:
Current mathematical models in building research have been limited in most studies to linear dynamics systems. A literature review of past studies investigating chaos theory approaches in building simulation models suggests that as a basis chaos model is valid and can handle the increasing complexity of building systems that have dynamic interactions among all the distributed and hierarchical systems on the one hand, and the environment and occupants on the other. The review also identifies the paucity of literature and the need for a suitable methodology of linking chaos theory to mathematical models in building design and management studies. This study is broadly divided into two parts and presented in two companion papers. Part (I), published in the previous issue, reviews the current state of the chaos theory models as a starting point for establishing theories that can be effectively applied to building simulation models. Part (II) develop conceptual frameworks that approach current model methodologies from the theoretical perspective provided by chaos theory, with a focus on the key concepts and their potential to help to better understand the nonlinear dynamic nature of built environment systems. Case studies are also presented which demonstrate the potential usefulness of chaos theory driven models in a wide variety of leading areas of building research. This study distills the fundamental properties and the most relevant characteristics of chaos theory essential to (1) building simulation scientists and designers (2) initiating a dialogue between scientists and engineers, and (3) stimulating future research on a wide range of issues involved in designing and managing building environmental systems.
Resumo:
A nonlinear regression structure comprising a wavelet network and a linear term is proposed for system identification. The theoretical foundation of the approach is laid by proving that radial wavelets are orthogonal to linear functions. A constructive procedure for building such models is described and the approach is tested with experimental data.
Resumo:
This paper shows that a wavelet network and a linear term can be advantageously combined for the purpose of non linear system identification. The theoretical foundation of this approach is laid by proving that radial wavelets are orthogonal to linear functions. A constructive procedure for building such nonlinear regression structures, termed linear-wavelet models, is described. For illustration, sim ulation data are used to identify a model for a two-link robotic manipulator. The results show that the introduction of wavelets does improve the prediction ability of a linear model.
Resumo:
We consider the finite sample properties of model selection by information criteria in conditionally heteroscedastic models. Recent theoretical results show that certain popular criteria are consistent in that they will select the true model asymptotically with probability 1. To examine the empirical relevance of this property, Monte Carlo simulations are conducted for a set of non–nested data generating processes (DGPs) with the set of candidate models consisting of all types of model used as DGPs. In addition, not only is the best model considered but also those with similar values of the information criterion, called close competitors, thus forming a portfolio of eligible models. To supplement the simulations, the criteria are applied to a set of economic and financial series. In the simulations, the criteria are largely ineffective at identifying the correct model, either as best or a close competitor, the parsimonious GARCH(1, 1) model being preferred for most DGPs. In contrast, asymmetric models are generally selected to represent actual data. This leads to the conjecture that the properties of parameterizations of processes commonly used to model heteroscedastic data are more similar than may be imagined and that more attention needs to be paid to the behaviour of the standardized disturbances of such models, both in simulation exercises and in empirical modelling.
Resumo:
The adsorption of gases on microporous carbons is still poorly understood, partly because the structure of these carbons is not well known. Here, a model of microporous carbons based on fullerene- like fragments is used as the basis for a theoretical study of Ar adsorption on carbon. First, a simulation box was constructed, containing a plausible arrangement of carbon fragments. Next, using a new Monte Carlo simulation algorithm, two types of carbon fragments were gradually placed into the initial structure to increase its microporosity. Thirty six different microporous carbon structures were generated in this way. Using the method proposed recently by Bhattacharya and Gubbins ( BG), the micropore size distributions of the obtained carbon models and the average micropore diameters were calculated. For ten chosen structures, Ar adsorption isotherms ( 87 K) were simulated via the hyper- parallel tempering Monte Carlo simulation method. The isotherms obtained in this way were described by widely applied methods of microporous carbon characterisation, i. e. Nguyen and Do, Horvath - Kawazoe, high- resolution alpha(a)s plots, adsorption potential distributions and the Dubinin - Astakhov ( DA) equation. From simulated isotherms described by the DA equation, the average micropore diameters were calculated using empirical relationships proposed by different authors and they were compared with those from the BG method.
Resumo:
Research into understanding bacterial chemotactic systems has become a paradigm for Systems Biology. Experimental and theoretical researchers have worked hand-in-hand for over 40 years to understand the intricate behavior driving bacterial species, in particular how such small creatures, usually not more than 5 µm in length, detect and respond to small changes in their extracellular environment. In this review we highlight the importance that theoretical modeling has played in providing new insight and understanding into bacterial chemotaxis. We begin with an overview of the bacterial chemotaxis sensory response, before reviewing the role of theoretical modeling in understanding elements of the system on the single cell scale and features underpinning multiscale extensions to population models. WIREs Syst Biol Med 2012 doi: 10.1002/wsbm.1168 For further resources related to this article, please visit the WIREs website.
Resumo:
Models of root system growth emerged in the early 1970s, and were based on mathematical representations of root length distribution in soil. The last decade has seen the development of more complex architectural models and the use of computer-intensive approaches to study developmental and environmental processes in greater detail. There is a pressing need for predictive technologies that can integrate root system knowledge, scaling from molecular to ensembles of plants. This paper makes the case for more widespread use of simpler models of root systems based on continuous descriptions of their structure. A new theoretical framework is presented that describes the dynamics of root density distributions as a function of individual root developmental parameters such as rates of lateral root initiation, elongation, mortality, and gravitropsm. The simulations resulting from such equations can be performed most efficiently in discretized domains that deform as a result of growth, and that can be used to model the growth of many interacting root systems. The modelling principles described help to bridge the gap between continuum and architectural approaches, and enhance our understanding of the spatial development of root systems. Our simulations suggest that root systems develop in travelling wave patterns of meristems, revealing order in otherwise spatially complex and heterogeneous systems. Such knowledge should assist physiologists and geneticists to appreciate how meristem dynamics contribute to the pattern of growth and functioning of root systems in the field.