947 resultados para Th1 Cells -- immunology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Androgen-dependent pathways regulate maintenance and growth of normal and malignant prostate tissues. Androgen deprivation therapy (ADT) exploits this dependence and is used to treat metastatic prostate cancer; however, regression initially seen with ADT gives way to development of incurable castration-resistant prostate cancer (CRPC). Although ADT generates a therapeutic response, it is also associated with a pattern of metabolic alterations consistent with metabolic syndrome including elevated circulating insulin. Because CRPC cells are capable of synthesizing androgens de novo, we hypothesized that insulin may also influence steroidogenesis in CRPC. In this study, we examined this hypothesis by evaluating the effect of insulin on steroid synthesis in prostate cancer cell lines. Treatment with 10 nmol/L insulin increased mRNA and protein expression of steroidogenesis enzymes and upregulated the insulin receptor substrate insulin receptor substrate 2 (IRS-2). Similarly, insulin treatment upregulated intracellular testosterone levels and secreted androgens, with the concentrations of steroids observed similar to the levels reported in prostate cancer patients. With similar potency to dihydrotestosterone, insulin treatment resulted in increased mRNA expression of prostate-specific antigen. CRPC progression also correlated with increased expression of IRS-2 and insulin receptor in vivo. Taken together, our findings support the hypothesis that the elevated insulin levels associated with therapeutic castration may exacerbate progression of prostate cancer to incurable CRPC in part by enhancing steroidogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chlamydiae are intracellular bacteria that commonly cause infections of the respiratory and genital tracts, which are major clinical problems. Infections are also linked to the aetiology of diseases such as asthma, emphysema and heart disease. The clinical management of infection is problematic and antibiotic resistance is emerging. Increased understanding of immune processes that are involved in both clearance and immunopathology of chlamydial infection is critical for the development of improved treatment strategies. Here, we show that IL-13 was produced in the lungs of mice rapidly after Chlamydia muridarum (Cmu) infection and promoted susceptibility to infection. Wild-type (WT) mice had increased disease severity, bacterial load and associated inflammation compared to IL-13 deficient (−/−) mice as early as 3 days post infection (p.i.). Intratracheal instillation of IL-13 enhanced bacterial load in IL-13−/− mice. There were no differences in early IFN-g and IL-10 expression between WT and IL-13−/− mice and depletion of CD4+ T cells did not affect infection in IL-13−/− mice. Collectively, these data demonstrate a lack of CD4+ T cell involvement and a novel role for IL-13 in innate responses to infection. We also showed that IL-13 deficiency increased macrophage uptake of Cmu in vitro and in vivo. Moreover, the depletion of IL-13 during infection of lung epithelial cells in vitro decreased the percentage of infected cells and reduced bacterial growth. Our results suggest that enhanced IL-13 responses in the airways, such as that found in asthmatics, may promote susceptibility to chlamydial lung infection. Importantly the role of IL-13 in regulating infection was not limited to the lung as we showed that IL-13 also promoted susceptibility to Cmu genital tract infection. Collectively our findings demonstrate that innate IL-13 release promotes infection that results in enhanced inflammation and have broad implications for the treatment of chlamydial infections and IL-13-associated diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An assay for the bovine viral diarrhoea virus (BVDV) replicase was developed using extracts from BVDV-infected cells. The replicase activity was maximal approximately 8 h post-infection as measured by the generation of a genomic length radiolabelled RNA. Using a semi-denaturing gel system, three virus-specific in vitro radiolabelled nascent RNA species were identified. A fast-migrating RNA was demonstrated to be the double-stranded replicative form (RF). A second form was shown to be a partially single-stranded/partially doublestranded RNA, characteristic of the replicative intermediate (RI). A third form, which was often undetectable, migrated between the RF and RI and was probably genomic viral RNA. The optimal replicase activity was dependent on 5–10mM Mg2+ and although it was also active in 1–2mM Mn2+ it was inhibited at higher concentrations. The optimum KCl concentration for labelling of the RI and RF were different, suggestive of at least two distinct replicase activities. These results are supportive of a semi-conservative model of BVDV RNA replication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interaction between host and donor cells is believed to play an important role in osteogenesis. However, it is still unclear how donor osteogenic cells behave and interact with host cells in vivo. The purpose of this study was to track the interactions between transplanted osteogenic cells and host cells during osteogenesis. In vitro migration assay was carried out to investigate the ability of osteogenic differentiated humanmesenchymal stemcells (O-hMSCs) to recruit MSCs. At the in vivo level, O-hMSCs were implanted subcutaneously or into skull defects in severe combined immunodeficient (SCID) mice. New bone formation was observed bymicro-CT and histological procedures. In situ hybridization (ISH) against human Alu sequences was performed to distinguish donor osteogenic cells from host cells. In vitro migration assay revealed an increased migration potential of MSCs by co-culturing with O-hMSCs. In agreement with the results of in vitro studies, ISH against human Alu sequences showed that host mouse MSCs migrated in large numbers into the transplantation site in response to O-hMSCs. Interestingly, host cells recruited by O-hMSCs were the major cell populations in newly formed bone tissues, indicating that O-hMSCs can trigger and initiate osteogenesis when transplanted in orthotopic sites. The observations fromthis study demonstrated that in vitro induced O-hMSCs were able to attract hostMSCs in vivo andwere involved inosteogenesis togetherwith host cells,whichmay be of importance for bone tissue-engineering applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biophysical and biochemical properties of the microenvironment regulate cellular responses such as growth, differentiation, morphogenesis and migration in normal and cancer cells. Since two-dimensional (2D) cultures lack the essential characteristics of the native cellular microenvironment, three-dimensional (3D) cultures have been developed to better mimic the natural extracellular matrix. To date, 3D culture systems have relied mostly on collagen and Matrigel™ hydrogels, allowing only limited control over matrix stiffness, proteolytic degradability, and ligand density. In contrast, bioengineered hydrogels allow us to independently tune and systematically investigate the influence of these parameters on cell growth and differentiation. In this study, polyethylene glycol (PEG) hydrogels, functionalized with the Arginine-glycine-aspartic acid (RGD) motifs, common cell-binding motifs in extracellular matrix proteins, and matrix metalloproteinase (MMP) cleavage sites, were characterized regarding their stiffness, diffusive properties, and ability to support growth of androgen-dependent LNCaP prostate cancer cells. We found that the mechanical properties modulated the growth kinetics of LNCaP cells in the PEG hydrogel. At culture periods of 28 days, LNCaP cells underwent morphogenic changes, forming tumor-like structures in 3D culture, with hypoxic and apoptotic cores. We further compared protein and gene expression levels between 3D and 2D cultures upon stimulation with the synthetic androgen R1881. Interestingly, the kinetics of R1881 stimulated androgen receptor (AR) nuclear translocation differed between 2D and 3D cultures when observed by immunofluorescent staining. Furthermore, microarray studies revealed that changes in expression levels of androgen responsive genes upon R1881 treatment differed greatly between 2D and 3D cultures. Taken together, culturing LNCaP cells in the tunable PEG hydrogels reveals differences in the cellular responses to androgen stimulation between the 2D and 3D environments. Therefore, we suggest that the presented 3D culture system represents a powerful tool for high throughput prostate cancer drug testing that recapitulates tumor microenvironment. © 2012 Sieh et al.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Mesenchymal stromal cells (MSC) with similar properties to bone marrow derived mesenchymal stromal cells (BM-MSC) have recently been grown from the limbus of the human cornea. We presently contribute to this novel area of research by evaluating methods for culturing human limbal MSC (L-MSC). Methods: Four basic strategies are compared: serum-supplemented medium (10% foetal bovine serum; FBS), standard serum-free medium supplemented with B-27, epidermal growth factor, and fibroblast growth factor 2, or one of two commercial serum-free media including Defined Keratinocyte Serum Free Medium (Invitrogen), and MesenCult-XF (Stem Cell Technologies). The phenotype of resulting cultures was examined using photography, flow cytometry (for CD34, CD45, CD73, CD90, CD105, CD141, CD271), immunocytochemistry (α-sma), differentiation assays (osteogenesis, adipogenesis, chrondrogenesis), and co-culture experiments with human limbal epithelial (HLE) cells. Results: While all techniques supported to varying degrees establishment of cultures, sustained growth and serial propagation was only achieved in 10% FBS medium or MesenCult-XF medium. Cultures established in 10% FBS medium were 70-80% CD34-/CD45-/CD90+/CD73+/CD105+, approximately 25% α-sma+, and displayed multi-potency. Cultures established in MesenCult-XF were >95% CD34-/CD45-/CD90+/CD73+/CD105+, 40% CD141+, rarely expressed α-sma, and displayed multi-potency. L-MSC supported growth of HLE cells, with the largest epithelial islands being observed in the presence of MesenCult-XF-grown L-MSC. All HLE cultures supported by L-MSC widely expressed the progenitor cell marker ∆Np63, along with the corneal differentiation marker cytokeratin 3. Conclusions: We conclude that MesenCult-XF® is a superior culture system for L-MSC, but further studies are required to explore the significance of CD141 expression in these cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: The fibroblast growth factor (FGF) family of signaling molecules has been associated with chemoresistance and poor prognosis in a number of cancer types, including lung, breast, ovarian, prostate, and head and neck carcinomas. Given the identification of activating mutations in the FGF receptor 2 (FGFR2) receptor tyrosine kinase in a subset of endometrial tumors, agents with activity against FGFRs are currently being tested in clinical trials for recurrent and progressive endometrial cancer. Here, we evaluated the effect of FGFR inhibition on the in vitro efficacy of chemotherapy in endometrial cancer cell lines. METHODS: Human endometrial cancer cell lines with wild-type or activating FGFR2 mutations were used to determine any synergism with concurrent use of the pan-FGFR inhibitor, PD173074, and the chemotherapeutics, doxorubicin and paclitaxel, on cell proliferation and apoptosis. RESULTS: FGFR2 mutation status did not alter sensitivity to either chemotherapeutic agent alone. The combination of PD173074 with paclitaxel or doxorubicin showed synergistic activity in the 3 FGFR2 mutant cell lines evaluated. In addition, although nonmutant cell lines were resistant to FGFR inhibition alone, the addition of PD173074 potentiated the cytostatic effect of paclitaxel and doxorubicin in a subset of FGFR2 wild-type endometrial cancer cell lines. CONCLUSIONS: Together these data suggest a potential therapeutic benefit to combining an FGFR inhibitor with standard chemotherapeutic agents in endometrial cancer therapy particularly in patients with FGFR2 mutation positive tumors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 'open window' theory is characterised by short term suppression of the immune system following an acute bout of endurance exercise. This window of opportunity may allow for an increase in susceptibility to upper respiratory illness (URI). Many studies have indicated a decrease in immune function in response to exercise. However, many studies do not indicate changes in immune function past 2 hours after the completion of exercise, consequently failing to determine whether these immune cells numbers, or importantly their function, return to resting levels before the start of another bout of exercise. Ten male 'A' grade cyclists (age 24.2 +/- 5.3 years; body mass 73.8 +/- 6.5 kg; VO(2peak) 65.9 +/- 7.1 mL.kg(-1).min(-1)) exercised for two hours at 90% of their second ventilatory threshold. Blood samples were collected pre-, immediately post-, 2 hours, 4 hours, 6 hours, 8 hours, and 24 hours post-exercise. Immune variables examined included total leukocyte counts, neutrophil function (oxidative burst and phagocytic function), lymphocyte subset counts (CD4(+), CD8(+), and CD16(+)/56(+)), natural killer cell activity (NKCA), and NK phenotypes (CD56(dim)CD16(+), and CD56(bright)CD16(-)). There was a significant increase in total lymphocyte numbers from pre-, to immediately post-exercise (p<0.01), followed by a significant decrease at 2 hours post-exercise (p<0.001). CD4(+) T-cell counts significantly increased from pre-exercise, to 4 hours post- (p<0.05), and 6 hours post-exercise (p<0.01). However, NK (CD16(+)/56(+)) cell numbers decreased significantly from pre-exercise to 4 h post-exercise (p<0.05), to 6 h post-exercise (p<0.05), and to 8 h post-exercise (p<0.01). In contrast, CD56(bright)CD16- NK cell counts significantly increased from pre-exercise to immediately post-exercise (p<0.01). Neutrophil oxidative burst activity did not significantly change in response to exercise, while neutrophil cell counts significantly increased from pre-exercise, to immediately post-exercise (p<0.05), and 2 hours post-exercise (p<0.01), and remained significantly above pre-exercise levels to 8 hours post-exercise (p<0.01). Neutrophil phagocytic function significantly decreased from 2 hours post-exercise, to 6 hours post- (p<0.05), and 24 hours post-exercise (p<0.05). Finally, eosinophil cell counts significantly increased from 2 hours post to 6 hours post- (p<0.05), and 8 hours post-exercise (p<0.05). This is the first study to show changes in immunological variables up to 8 hours post-exercise, including significant NK cell suppression, NK cell phenotype changes, a significant increase in total lymphocyte counts, and a significant increase in eosinophil cell counts all at 8 hours post-exercise. Suppression of total lymphocyte counts, NK cell counts and neutrophil phagocytic function following exercise may be important in the increased rate of URI in response to regular intense endurance training.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nutritional practices that promote good health and optimal athletic performance are of interest to athletes, coaches, exercise scientists and dietitians. Probiotic supplements modulate the intestinal microbial flora and offer promise as a practical means of enhancing gut and immune function. The intestinal microbial flora consists of diverse bacterial species that inhabit the gastrointestinal tract. These bacteria are integral to the ontogeny and regulation of the immune system, protection of the body from injection, and maintenance of intestinal homeostasis. The interaction of the gut microbial flora with intestinal epithelial cells and immune cells exerts beneficial effects on the upper respiratory tract, skin and uro-genital tract. The capacity for probiotics to modulate perturbations in immune function after exercise highlight their potential for use in individuals exposed to high degrees of physical and environment stress. Future studies are required to address issues of dose-response in various exercise settings, the magnitude of species-specific effects, mechanisms of action and clinical outcomes in terms of health and performance.