932 resultados para Tensile Tests


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Titanium has good biocompatibility and so its alloys are used as implant materials, but they suffer from having poor wear resistance. This research aims to improve the wear resistance and the tensile strength of titanium alloys potentially for implant applications. Titanium alloys Ti–6Al–4V and Ti–6Al–7Nb were subjected to shotpeening process to study the wear and tensile behavior. An improvement in the wear resistance has been achieved due to surface hardening of these alloys by the process of shotpeening. Surface microhardness of shotpeened Ti–6Al–4V and Ti–6Al–7Nb alloys has increased by 113 and 58 HV(0.5), respectively. After shotpeening, ultimate tensile strength of Ti–6Al–4V increased from 1000 MPa to 1150 MPa, higher than improvement obtained for heat treated titanium specimens. The results confirm that shotpeening pre-treatment improved tensile and sliding wear behavior of Ti–6Al–4V and Ti–6Al–7Nb alloys. In addition, shotpeening increased surface roughness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bonded-in rod connections in timber possess many desirable attributes in terms of efficiency, manufacture, performance, aesthetics and cost. In recent years research has been conducted on such connections using fibre reinforced polymers (FRPs) as an alternative to steel. This research programme investigates the pull-out capacity of Basalt FRP rods bonded-in in low grade Irish Sitka Spruce. Embedded length is thought to be the most influential variable contributing to pull- out capacity of bonded-in rods after rod diameter. Previous work has established an optimum embedded length of 15 times the hole diameter. However, this work only considered the effects of axial stress on the bond using a pull-compression testing system which may have given an artificially high pull out capacity as bending effects were neglected. A hinge system was utilised that allows the effects of bending force to be taken in to consideration along with axial forces in a pull-out test. This paper describes an experimental programme where such pull-bending tests were carried out on samples constructed of 12mm diameter BFRP bars with a 2mm glueline thickness and embedded lengths between 80mm and 280mm bonded-in to low-grade timber with an epoxy resin. Nine repetitions of each were tested. A clear increase in pull-out strength was found with increasing embedded length.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the mechanism of nanoscale fatigue of functionally graded TiN/TiNi films using nano-impact and multiple-loading-cycle nanoindentation tests. The functionally graded films were deposited on silicon substrate, in which TiNi films maintain shape memory and pseudo elastic behavior, while a modified TiN surface layer provides tribological and anti-corrosion properties. Nanomechanical tests were performed to comprehend the localized film performance and failure modes of the functionally graded film using NanoTestTM equipped with Berkovich and conical indenter between 100 μN to 500 mN loads. The loading mechanism and load history are critical to define film failure modes (i.e. backward depth deviation) including the shape memory effect of the functionally graded layer. The results are sensitive to the applied load, loading type (e.g. semi-static, dynamic) and probe geometry. Based on indentation force-depth profiles, depth-time data and post-test surface observations of films, it is concluded that the shape of the nanoindenter is critical in inducing the localized indentation stress and film failure, including shape recovery at the lower load range. Elastic-plastic finite element (FE) simulation during nanoindentation loading indicated that the location of subsurface maximum stress near the interface influences the backward depth deviation type of film failure. A standalone, molecular dynamics simulation was performed with the help of a long range potential energy function to simulate the tensile test of TiN nanowire with two different aspect ratios to investigate the theory of its failure mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current eight published ISO standards associated with semiconductor photocatalysis are considered. These standards cover: (1) air purification (specifically, the removal of NO, acetaldehyde and toluene), (2) water purification (the photobleaching of methylene blue and oxidation of DMSO) (3) self-cleaning surfaces (the removal of oleic acid and subsequent change in water droplet contact angle), (4) photosterilisation (specifically probing the antibacterial action of semiconductor photocatalyst films) and (5) UV light sources for semiconductor photocatalytic ISO work. For each standard, the background is first considered, followed by a brief discussion of the standard particulars and concluding in a discussion of the pros and cons of the standard, with often recommendations for their improvement. Other possible standards for the future which would either compliment or enhance the current ones are discussed briefly. 

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low-velocity impact damage can drastically reduce the residual strength of a composite structure even when the damage is barely visible. The ability to computationally predict the extent of damage and compression-after-impact (CAI) strength of a composite structure can potentially lead to the exploration of a larger design space without incurring significant time and cost penalties. A high-fidelity three-dimensional composite damage model, to predict both low-velocity impact damage and CAI strength of composite laminates, has been developed and implemented as a user material subroutine in the commercial finite element package, ABAQUS/Explicit. The intralaminar damage model component accounts for physically-based tensile and compressive failure mechanisms, of the fibres and matrix, when subjected to a three-dimensional stress state. Cohesive behaviour was employed to model the interlaminar failure between plies with a bi-linear traction–separation law for capturing damage onset and subsequent damage evolution. The virtual tests, set up in ABAQUS/Explicit, were executed in three steps, one to capture the impact damage, the second to stabilize the specimen by imposing new boundary conditions required for compression testing, and the third to predict the CAI strength. The observed intralaminar damage features, delamination damage area as well as residual strength are discussed. It is shown that the predicted results for impact damage and CAI strength correlated well with experimental testing without the need of model calibration which is often required with other damage models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study explored the validity of using critical thinking tests to predict final psychology degree marks over and above that already predicted by traditional admission exams (A-levels). Participants were a longitudinal sample of 109 psychology students from a university in the United Kingdom. The outcome measures were: total degree marks; and end of year marks. The predictor measures were: university admission exam results (A-levels); critical thinking test scores (skills & dispositions); and non-verbal intelligence scores. Hierarchical regressions showed A-levels significantly predicted 10% of the final degree score and the 11-item measure of ‘Inference skills’ from the California Critical Thinking Skills Test significantly predicted an additional 6% of degree outcome variance. The findings from this study should inform decisions about the precise measurement constructs included in aptitude tests used in the higher education admission process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we propose new cointegration tests for single equations and panels. Inboth cases, the asymptotic distributions of the tests, which are derived with N fixed andT → ∞, are shown to be standard normals. The effects of serial correlation and crosssectionaldependence are mopped out via long-run variances. An effective bias correctionis derived which is shown to work well in finite samples; particularly when N is smallerthan T. Our panel tests are robust to possible cointegration across units.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This short communication presents a research update of a new low nickel maraging steel, Fe–12.94%Ni–1.61%Al–1.01%Mo–0.23%Nb (wt%). Its yield stress and the tensile strength are 1080 MPa and 1180 MPa, respectively, after ageing treatment. Tensile specimens show ductile fracture. Fractography demonstrated deep dimples. Impact energy is 22 J on half-size specimens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The photocatalytic properties of self-cleaning acrylic paint containing TiO2 and ZnO were studied using Acid Orange 7 as a model compound. Paints were exposed to simulated weathering tests in a QUV panel. The initial photoactivity of the unweathered paints with ZnO was significantly higher. In the case of paints containing P25 the photocatalytic activity increases with weathering time, due to increasing destruction of the polymer resin and consequent exposure of the photocatalyst pigment to the Acid Orange 7 test solution. In contrast, in the case of paints containing ZnO, a decrease in photocatalytic activity is observed after weathering, due to the loss and/or photocorrosion of ZnO particles during the weathering process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A solvent-vapour thermoplastic bonding process is reported which provides high strength bonding of PMMA over a large area for multi-channel and multi-layer microfluidic devices with shallow high resolution channel features. The bond process utilises a low temperature vacuum thermal fusion step with prior exposure of the substrate to chloroform (CHCl3) vapour to reduce bond temperature to below the PMMA glass transition temperature. Peak tensile and shear bond strengths greater than 3 MPa were achieved for a typical channel depth reduction of 25 µm. The device-equivalent bond performance was evaluated for multiple layers and high resolution channel features using double-side and single-side exposure of the bonding pieces. A single-sided exposure process was achieved which is suited to multi-layer bonding with channel alignment at the expense of greater depth loss and a reduction in peak bond strength. However, leak and burst tests demonstrate bond integrity up to at least 10 bar channel pressure over the full substrate area of 100 mm x 100 mm. The inclusion of metal tracks within the bond resulted in no loss of performance. The vertical wall integrity between channels was found to be compromised by solvent permeation for wall thicknesses of 100 µm which has implications for high resolution serpentine structures. Bond strength is reduced considerably for multi-layer patterned substrates where features on each layer are not aligned, despite the presence of an intermediate blank substrate. Overall a high performance bond process has been developed that has the potential to meet the stringent specifications for lab-on-chip deployment in harsh environmental conditions for applications such as deep ocean profiling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tensile strength obtained from existing testing methods such as ASTM D3039, based on flat coupons, usually has a large scatter for fibre reinforced polymer (FRP) composites. This means that the measured strength may not represent the actual strength of the material, leading to under or over design. This paper develops a new interpretation method which requires fewer tests, saving money and time. Moreover the results are more consistent and more closely represent the actual strength which can lead to a safer and more economical design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A three-dimensional continuum damage mechanics-based material model has been implemented in an implicit Finite Element code to simulate the progressive degradation of advanced composite materials. The damage model uses seven damage variables assigned to tensile, compressive and non-linear shear damage at a laminae level. The objectivity of the numerical discretization is assured using a smeared formulation. The material model was benchmarked against experimental uniaxial coupon tests and it is shown to reproduce key aspects observable during failure, such as the inclined fracture plane in matrix compression and the shear band in a ±45° tension specimen.